Online adaptive algorithm for Constraint Energy Minimizing Generalized Multiscale Discontinuous Galerkin Method

Sai-Mang Pun, Siu Wun Cheung
{"title":"Online adaptive algorithm for Constraint Energy Minimizing Generalized Multiscale Discontinuous Galerkin Method","authors":"Sai-Mang Pun, Siu Wun Cheung","doi":"10.1137/21m1402625","DOIUrl":null,"url":null,"abstract":"In this research, we propose an online basis enrichment strategy within the framework of a recently developed constraint energy minimizing generalized multiscale discontinuous Galerkin method (CEM-GMsDGM). Combining the technique of oversampling, one makes use of the information of the current residuals to adaptively construct basis functions in the online stage to reduce the error of multiscale approximation. A complete analysis of the method is presented, which shows the proposed online enrichment leads to a fast convergence from multiscale approximation to the fine-scale solution. The error reduction can be made sufficiently large by suitably selecting oversampling regions and the number of oversampling layers. Further, the convergence rate of the enrichment algorithm depends on a factor of exponential decay regarding the number of oversampling layers and a user-defined parameter. Numerical results are provided to demonstrate the effectiveness and efficiency of the proposed online adaptive algorithm.","PeriodicalId":313703,"journal":{"name":"Multiscale Model. Simul.","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Model. Simul.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1402625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this research, we propose an online basis enrichment strategy within the framework of a recently developed constraint energy minimizing generalized multiscale discontinuous Galerkin method (CEM-GMsDGM). Combining the technique of oversampling, one makes use of the information of the current residuals to adaptively construct basis functions in the online stage to reduce the error of multiscale approximation. A complete analysis of the method is presented, which shows the proposed online enrichment leads to a fast convergence from multiscale approximation to the fine-scale solution. The error reduction can be made sufficiently large by suitably selecting oversampling regions and the number of oversampling layers. Further, the convergence rate of the enrichment algorithm depends on a factor of exponential decay regarding the number of oversampling layers and a user-defined parameter. Numerical results are provided to demonstrate the effectiveness and efficiency of the proposed online adaptive algorithm.
约束能量最小化广义多尺度间断伽辽金法的在线自适应算法
在本研究中,我们提出了一种基于约束能量最小化广义多尺度不连续伽辽金方法(gem - gmsdgm)的在线基富集策略。结合过采样技术,在在线阶段利用当前残差信息自适应构造基函数,以减小多尺度逼近的误差。对该方法进行了完整的分析,结果表明,所提出的在线富集方法可以从多尺度近似快速收敛到精细尺度解。通过适当选择过采样区域和过采样层数,可以使误差减小得足够大。此外,富集算法的收敛速度取决于关于过采样层数和用户定义参数的指数衰减因子。数值结果验证了该算法的有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信