Hadoop in OpenStack: Data-location-aware cluster provisioning

A. F. Thaha, Manvir Singh, A. Amin, N. M. Ahmad, Subarmaniam Kannan
{"title":"Hadoop in OpenStack: Data-location-aware cluster provisioning","authors":"A. F. Thaha, Manvir Singh, A. Amin, N. M. Ahmad, Subarmaniam Kannan","doi":"10.1109/WICT.2014.7077282","DOIUrl":null,"url":null,"abstract":"Nowadays, cloud based analytics platforms are replacing traditional physical clusters due to the high efficiency it provides. Such cloud platforms runs Hadoop on virtual clusters with remotely attached storage. In cloud architecture with multiple geographically separated regions, virtual machines (VMs) belonging to a virtual cluster are placed randomly. In order to run MapReduce jobs, data have to be moved to the regions where the VMs reside to achieve data locality. In this paper, we propose a data-location aware virtual cluster provisioning strategy to identify the data location and provision the cluster near to the storage. The use of bio-inspired optimization algorithms are considered for optimizing the placements of VMs. Data location aware cluster provisioning reduces the network distance between storage and the virtual cluster, resulting in faster job completion times.","PeriodicalId":439852,"journal":{"name":"2014 4th World Congress on Information and Communication Technologies (WICT 2014)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 4th World Congress on Information and Communication Technologies (WICT 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WICT.2014.7077282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Nowadays, cloud based analytics platforms are replacing traditional physical clusters due to the high efficiency it provides. Such cloud platforms runs Hadoop on virtual clusters with remotely attached storage. In cloud architecture with multiple geographically separated regions, virtual machines (VMs) belonging to a virtual cluster are placed randomly. In order to run MapReduce jobs, data have to be moved to the regions where the VMs reside to achieve data locality. In this paper, we propose a data-location aware virtual cluster provisioning strategy to identify the data location and provision the cluster near to the storage. The use of bio-inspired optimization algorithms are considered for optimizing the placements of VMs. Data location aware cluster provisioning reduces the network distance between storage and the virtual cluster, resulting in faster job completion times.
Hadoop in OpenStack:数据位置感知的集群发放
如今,基于云的分析平台正在取代传统的物理集群,因为它提供了高效率。这样的云平台在带有远程附加存储的虚拟集群上运行Hadoop。在具有多个地理分隔区域的云架构中,属于一个虚拟集群的虚拟机(vm)是随机放置的。为了运行MapReduce作业,必须将数据移动到虚拟机所在的区域,以实现数据的局部性。在本文中,我们提出了一种数据位置感知的虚拟集群配置策略,用于识别数据位置并在靠近存储的位置配置集群。考虑使用生物启发的优化算法来优化vm的位置。数据位置感知的集群发放减少了存储和虚拟集群之间的网络距离,从而缩短了作业完成时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信