Rui Faria, E. J. S. Pires, Argentina Leite, Tatiana Saraiva
{"title":"Covid-19 Automatic Test through Human Breathing","authors":"Rui Faria, E. J. S. Pires, Argentina Leite, Tatiana Saraiva","doi":"10.1109/LA-CCI48322.2021.9769822","DOIUrl":null,"url":null,"abstract":"A classifier using a Long Short-Term Memory (LSTM) network to identify human beings infected with Covid-19 is proposed in this work. This classifier has significant advantages over current testing methods: it is fast, contactless, and requires few monetary resources. The data considered for this study was extracted from the Coswara dataset using 140 individuals (70 healthy and 70 infected with Covid-19). This dataset contains respiratory signals, such as people counting numbers, coughing, or breathing. The classifier uses non-linear time sequence features extracted from the signals after a preprocessing stage. The classifier was able to discriminate whether a human is infected with Covid-19 with an accuracy of 92.1%, specificity of 85.7%, and sensitivity of 98.6% using 5-fold Cross-Validation. Based on the results obtained, the classifier can be used as an alternative for the Reverse Transcription Polymerase Chain Reaction (RT-PCR) tests.","PeriodicalId":431041,"journal":{"name":"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LA-CCI48322.2021.9769822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A classifier using a Long Short-Term Memory (LSTM) network to identify human beings infected with Covid-19 is proposed in this work. This classifier has significant advantages over current testing methods: it is fast, contactless, and requires few monetary resources. The data considered for this study was extracted from the Coswara dataset using 140 individuals (70 healthy and 70 infected with Covid-19). This dataset contains respiratory signals, such as people counting numbers, coughing, or breathing. The classifier uses non-linear time sequence features extracted from the signals after a preprocessing stage. The classifier was able to discriminate whether a human is infected with Covid-19 with an accuracy of 92.1%, specificity of 85.7%, and sensitivity of 98.6% using 5-fold Cross-Validation. Based on the results obtained, the classifier can be used as an alternative for the Reverse Transcription Polymerase Chain Reaction (RT-PCR) tests.