Using eye tracking technology to identify visual and verbal learners

T. Mehigan, M. Barry, Aidan Kehoe, I. Pitt
{"title":"Using eye tracking technology to identify visual and verbal learners","authors":"T. Mehigan, M. Barry, Aidan Kehoe, I. Pitt","doi":"10.1109/ICME.2011.6012036","DOIUrl":null,"url":null,"abstract":"Learner style data is increasingly being incorporated into adaptive eLearning (electronic learning) systems for the development of personalized user models. This practice currently relies heavily on the prior completion of questionnaires by system users. Whilst potentially improving learning outcomes, the completion of questionnaires can be time consuming for users. Recent research indicates that it is possible to detect a user's preference on the Global / Sequential dimension of the FSLSM (Felder-Silverman Learner Style Model) through a user's mouse movement pattern, and other biometric technology including eye tracking and accelerometer technology. In this paper we discuss the potential of eye tracking technology for inference of Visual / Verbal learners. The paper will discuss the results of a study conducted to detect individual user style data based on the Visual / Verbal dimension of the FSLSM.","PeriodicalId":433997,"journal":{"name":"2011 IEEE International Conference on Multimedia and Expo","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2011.6012036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

Learner style data is increasingly being incorporated into adaptive eLearning (electronic learning) systems for the development of personalized user models. This practice currently relies heavily on the prior completion of questionnaires by system users. Whilst potentially improving learning outcomes, the completion of questionnaires can be time consuming for users. Recent research indicates that it is possible to detect a user's preference on the Global / Sequential dimension of the FSLSM (Felder-Silverman Learner Style Model) through a user's mouse movement pattern, and other biometric technology including eye tracking and accelerometer technology. In this paper we discuss the potential of eye tracking technology for inference of Visual / Verbal learners. The paper will discuss the results of a study conducted to detect individual user style data based on the Visual / Verbal dimension of the FSLSM.
使用眼动追踪技术来识别视觉和语言学习者
学习者风格数据越来越多地被纳入自适应电子学习(电子学习)系统,以开发个性化的用户模型。这种做法目前在很大程度上依赖于系统用户事先完成问卷。虽然有可能提高学习成果,但完成调查问卷对用户来说可能很耗时。最近的研究表明,可以通过用户的鼠标运动模式和其他生物识别技术(包括眼动追踪和加速度计技术)来检测用户在FSLSM (Felder-Silverman Learner Style Model)的全局/顺序维度上的偏好。在本文中,我们讨论了眼动追踪技术在视觉/语言学习者推理中的潜力。本文将讨论一项基于FSLSM的视觉/语言维度来检测个人用户风格数据的研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信