{"title":"Numerical Design of Dual Resonant Microstrip Surface RF Coil for MRI Application","authors":"Adhi Mahendra, Basari, E. Rahardjo","doi":"10.1109/CAMA47423.2019.8959540","DOIUrl":null,"url":null,"abstract":"Magnetic resonance imaging (MRI) has three main components, namely the main magnet, gradient coil, and RF coil. RF coils play an important role as recipients of RF signals from the emission of magnetic resonance and RF excitation into atomic nuclei of the human body. In this paper, we propose a design of dual resonant microstrip RF coil that operates at 1.5 T and 3 T MRI. The proposed coil is simple structure for surface RF coil and capable of working at frequencies of 63.8 MHz and 127.6 MHz. The simulation results show that the reflection coefficient (S11) is less than −10 dB either without or with the human phantom model at both operating frequencies. As for magnetic field distribution, the field is more homogeneous at the lower operating frequency compared to the higher one. The computed peak specific absorption rate (SAR) is obtained by about 0.56 W/kg and 0.91 W/kg at 63.8 MHz and 127.6 MHz, respectively.","PeriodicalId":170627,"journal":{"name":"2019 IEEE Conference on Antenna Measurements & Applications (CAMA)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Conference on Antenna Measurements & Applications (CAMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMA47423.2019.8959540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Magnetic resonance imaging (MRI) has three main components, namely the main magnet, gradient coil, and RF coil. RF coils play an important role as recipients of RF signals from the emission of magnetic resonance and RF excitation into atomic nuclei of the human body. In this paper, we propose a design of dual resonant microstrip RF coil that operates at 1.5 T and 3 T MRI. The proposed coil is simple structure for surface RF coil and capable of working at frequencies of 63.8 MHz and 127.6 MHz. The simulation results show that the reflection coefficient (S11) is less than −10 dB either without or with the human phantom model at both operating frequencies. As for magnetic field distribution, the field is more homogeneous at the lower operating frequency compared to the higher one. The computed peak specific absorption rate (SAR) is obtained by about 0.56 W/kg and 0.91 W/kg at 63.8 MHz and 127.6 MHz, respectively.