Sensor Fault Estimation via Iterative Learning Scheme for Linear Repetitive System

Li Feng, Meng Deng, Shuiqing Xu, Ke Zhang
{"title":"Sensor Fault Estimation via Iterative Learning Scheme for Linear Repetitive System","authors":"Li Feng, Meng Deng, Shuiqing Xu, Ke Zhang","doi":"10.1109/SAFEPROCESS45799.2019.9213380","DOIUrl":null,"url":null,"abstract":"In this study, a sensor fault estimation framework is proposed for linear repetitive system. Firstly, the problem of sensor fault estimation is converted to state estimation via state redefinition. Then, state estimation is realized by conventional state observer. The uniformly convergence of error extended system is guaranteed by asymptotic stability. Afterwards, iterative learning law is presented for fault estimation. And the optimal function is designed for the iterative convergence. Finally, Linear matrix inequalities (LMIs) is utilized to obtain the specific feasible solution, thus to improve the performance of proposed method. Further, a numerical example is provided to demonstrate the effectiveness of the developed method.","PeriodicalId":353946,"journal":{"name":"2019 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAFEPROCESS45799.2019.9213380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this study, a sensor fault estimation framework is proposed for linear repetitive system. Firstly, the problem of sensor fault estimation is converted to state estimation via state redefinition. Then, state estimation is realized by conventional state observer. The uniformly convergence of error extended system is guaranteed by asymptotic stability. Afterwards, iterative learning law is presented for fault estimation. And the optimal function is designed for the iterative convergence. Finally, Linear matrix inequalities (LMIs) is utilized to obtain the specific feasible solution, thus to improve the performance of proposed method. Further, a numerical example is provided to demonstrate the effectiveness of the developed method.
基于迭代学习的线性重复系统传感器故障估计
本文提出了一种线性重复系统的传感器故障估计框架。首先,通过状态重定义将传感器故障估计问题转化为状态估计问题;然后,利用常规状态观测器实现状态估计。用渐近稳定性保证了误差扩展系统的一致收敛性。然后,提出了故障估计的迭代学习规律。并设计了迭代收敛的最优函数。最后,利用线性矩阵不等式(lmi)得到具体可行解,提高了所提方法的性能。最后,通过数值算例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信