Optimization of mean wind estimation methods from wind lidar's conical scan data

Ramdas Makhmanasarov, A. M. Sherstobitov
{"title":"Optimization of mean wind estimation methods from wind lidar's conical scan data","authors":"Ramdas Makhmanasarov, A. M. Sherstobitov","doi":"10.1117/12.2644849","DOIUrl":null,"url":null,"abstract":"The calculation time and the error of the estimates of the horizontal wind velocity from the data of the conical scan are compared. Various implementations of algorithms for direct and filtered sinusoidal wave fitting, and machine learning algorithms based on boosted decision trees (BDT), are being tested. The paper presents the advantages and disadvantages of these algorithms in numerical simulation and experimental data, obtained during measurements with pulse coherent Doppler lidar.","PeriodicalId":217776,"journal":{"name":"Atmospheric and Ocean Optics","volume":"242 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Ocean Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2644849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The calculation time and the error of the estimates of the horizontal wind velocity from the data of the conical scan are compared. Various implementations of algorithms for direct and filtered sinusoidal wave fitting, and machine learning algorithms based on boosted decision trees (BDT), are being tested. The paper presents the advantages and disadvantages of these algorithms in numerical simulation and experimental data, obtained during measurements with pulse coherent Doppler lidar.
基于风激光雷达锥形扫描数据的平均风估计方法优化
比较了利用圆锥扫描数据估计水平风速的计算时间和误差。目前正在测试直接和滤波正弦波拟合算法的各种实现,以及基于增强决策树(BDT)的机器学习算法。本文从数值模拟和脉冲相干多普勒激光雷达测量的实验数据中介绍了这些算法的优缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信