Differentiation of Sliding Rescaled Ranges: New Approach to Encrypted and VPN Traffic Detection

R. Nigmatullin, Alexander Ivchenko, Semyon Dorokhin
{"title":"Differentiation of Sliding Rescaled Ranges: New Approach to Encrypted and VPN Traffic Detection","authors":"R. Nigmatullin, Alexander Ivchenko, Semyon Dorokhin","doi":"10.1109/EnT50437.2020.9431285","DOIUrl":null,"url":null,"abstract":"We propose a new approach to traffic preprocessing called Differentiation of Sliding Rescaled Ranges (DSRR) expanding the ideas laid down by H.E. Hurst. We apply proposed approach on the characterizing encrypted and unencrypted traffic on the well-known ISCXVPN2016 dataset. We deploy DSRR for flow-base features and then solve the task VPN vs nonVPN with basic machine learning models. With DSRR and Random Forest, we obtain 0.971 Precision, 0.969 Recall and improve this result to 0.976 using statistical analysis of features in comparison with Neural Network approach that gives 0.93 Precision via 2D-CNN. The proposed method and the results can be found at https://github.com/AleksandrIvchenko/dsrr_vpn_nonvpn.","PeriodicalId":129694,"journal":{"name":"2020 International Conference Engineering and Telecommunication (En&T)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference Engineering and Telecommunication (En&T)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EnT50437.2020.9431285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a new approach to traffic preprocessing called Differentiation of Sliding Rescaled Ranges (DSRR) expanding the ideas laid down by H.E. Hurst. We apply proposed approach on the characterizing encrypted and unencrypted traffic on the well-known ISCXVPN2016 dataset. We deploy DSRR for flow-base features and then solve the task VPN vs nonVPN with basic machine learning models. With DSRR and Random Forest, we obtain 0.971 Precision, 0.969 Recall and improve this result to 0.976 using statistical analysis of features in comparison with Neural Network approach that gives 0.93 Precision via 2D-CNN. The proposed method and the results can be found at https://github.com/AleksandrIvchenko/dsrr_vpn_nonvpn.
滑动重刻度范围的区分:加密和VPN流量检测的新方法
我们提出了一种新的交通预处理方法,称为滑动重刻度范围的微分(DSRR),扩展了赫斯特提出的思想。我们将该方法应用于知名的ISCXVPN2016数据集上的加密和未加密流量的表征。我们为基于流的特征部署DSRR,然后使用基本的机器学习模型解决VPN与非VPN的任务。使用DSRR和Random Forest,我们得到0.971 Precision, 0.969 Recall,并通过特征统计分析将结果提高到0.976,而通过2D-CNN的神经网络方法得到0.93 Precision。所提出的方法和结果可在https://github.com/AleksandrIvchenko/dsrr_vpn_nonvpn上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信