Sensor Scheduling Under Action Dependent Decision-Making Epochs

D. Raihan, W. Faber, S. Chakravorty, I. Hussein
{"title":"Sensor Scheduling Under Action Dependent Decision-Making Epochs","authors":"D. Raihan, W. Faber, S. Chakravorty, I. Hussein","doi":"10.23919/fusion43075.2019.9011443","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of optimally allocating sensing resources for maximizing information gained in a multi-target tracking scenario. In particular, we examine the optimal allocation of a single ground-based sensor to multiple space-based targets to maximize the information gained in the space situational awareness problem. The optimization problem is solved in a receding horizon fashion at action dependent decision epochs that are not assumed to occur at regular intervals. We use a parallel Markov Chain Monte Carlo algorithm to compute the optimal target assignment sequence under constraints posed by the dynamics of the sensor. Information gain is quantified in terms of the differential entropy of the state probability density function. The effectiveness of the approach is demonstrated through a simulation study.","PeriodicalId":348881,"journal":{"name":"2019 22th International Conference on Information Fusion (FUSION)","volume":"222 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22th International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/fusion43075.2019.9011443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we consider the problem of optimally allocating sensing resources for maximizing information gained in a multi-target tracking scenario. In particular, we examine the optimal allocation of a single ground-based sensor to multiple space-based targets to maximize the information gained in the space situational awareness problem. The optimization problem is solved in a receding horizon fashion at action dependent decision epochs that are not assumed to occur at regular intervals. We use a parallel Markov Chain Monte Carlo algorithm to compute the optimal target assignment sequence under constraints posed by the dynamics of the sensor. Information gain is quantified in terms of the differential entropy of the state probability density function. The effectiveness of the approach is demonstrated through a simulation study.
动作依赖决策时代下的传感器调度
在本文中,我们考虑了在多目标跟踪场景中感知资源的最优分配问题,以获得最大的信息。特别地,我们研究了单个地面传感器对多个天基目标的最佳分配,以最大限度地提高空间态势感知问题中获得的信息。优化问题是在行动依赖的决策时期以一种后退视界的方式解决的,这些决策时期不假设以固定的间隔发生。利用并行马尔可夫链蒙特卡罗算法,在传感器动态约束条件下计算出最优目标分配序列。用状态概率密度函数的微分熵来量化信息增益。通过仿真研究验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信