Weight Construction in Extended Space Expectation Values for Singular Quantum Systems at Spectral Structuring and Temporal Constancy Limit

Berfin Kalay, M. Demiralp
{"title":"Weight Construction in Extended Space Expectation Values for Singular Quantum Systems at Spectral Structuring and Temporal Constancy Limit","authors":"Berfin Kalay, M. Demiralp","doi":"10.1109/MCSI.2014.22","DOIUrl":null,"url":null,"abstract":"We have recently shown that the operator expectation values for the quantum dynamical systems of singular Hamiltonians, cannot be expanded into temporal Maclaurin series. Depending on the nature of the system under consideration and the relevant operator, either a finite number of terms can exist while the others become infinite or the series can convergence only at the beginning of the evolution even if the coefficients of the series all exist. This however happens when the initial wave packet has some features leading us to nonintegrabilities in certain expectation values. The reason why this happens underlies beneath the fact that the certain images of the initial wave packet under certain natural number powers of the Hamiltonian become nonintegrable. This negativity can be bypassed by using certain weight functions in the expectation value definition and corresponds to working on an extended space constructed from the Hilbert space in which the initial and any time wave function lay. We have used a two parameter weight function in our most recent publication. Here, in this work, we extend the weight function to multiparameter structures where the number of parameters is more than two and may climb even up to infinity.","PeriodicalId":202841,"journal":{"name":"2014 International Conference on Mathematics and Computers in Sciences and in Industry","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Mathematics and Computers in Sciences and in Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSI.2014.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We have recently shown that the operator expectation values for the quantum dynamical systems of singular Hamiltonians, cannot be expanded into temporal Maclaurin series. Depending on the nature of the system under consideration and the relevant operator, either a finite number of terms can exist while the others become infinite or the series can convergence only at the beginning of the evolution even if the coefficients of the series all exist. This however happens when the initial wave packet has some features leading us to nonintegrabilities in certain expectation values. The reason why this happens underlies beneath the fact that the certain images of the initial wave packet under certain natural number powers of the Hamiltonian become nonintegrable. This negativity can be bypassed by using certain weight functions in the expectation value definition and corresponds to working on an extended space constructed from the Hilbert space in which the initial and any time wave function lay. We have used a two parameter weight function in our most recent publication. Here, in this work, we extend the weight function to multiparameter structures where the number of parameters is more than two and may climb even up to infinity.
广义量子系统在谱结构和时间常数极限下扩展空间期望值的权构造
我们最近证明了奇异哈密顿量的量子动力系统的算子期望值不能展开成时间麦克劳林级数。根据所考虑的系统和相关算子的性质,要么有限项存在,而其他项变为无限项,要么即使级数的系数都存在,级数也只能在演化的开始收敛。然而,当初始波包具有某些特征导致我们在某些期望值中不可积时,就会发生这种情况。发生这种情况的原因在于,初始波包的某些像在哈密顿数的某些自然数幂下变得不可积。这种负性可以通过在期望值定义中使用某些权重函数来绕过,并且对应于从希尔伯特空间构建的扩展空间,其中初始和任意时间波函数所在。我们在最近的出版物中使用了一个双参数权重函数。在这里,在这项工作中,我们将权重函数扩展到多参数结构,其中参数的数量大于2,并且可以爬升到无穷大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信