{"title":"Fuzzy Multi-Objective Mission Flight Planning in Unmanned Aerial Systems","authors":"P. Wu, R. Clothier, D. Campbell, R. Walker","doi":"10.1109/MCDM.2007.369409","DOIUrl":null,"url":null,"abstract":"This paper discusses the development of a multi-objective mission flight planning algorithm for unmanned aerial system (UAS) operations within the National Airspace System (NAS). Existing methods for multi-objective planning are largely confined to two dimensional searches and/or acyclic graphs in deterministic environments; many are computationally infeasible for large state spaces. In this paper, a multi-objective fuzzy logic decision maker is used to augment the D* Lite graph search algorithm in finding a near optimal path. This not only enables evaluation and trade-off between multiple objectives when choosing a path in three dimensional space, but also allows for the modelling of data uncertainty. A case study scenario is developed to illustrate the performance of a number of different algorithms. It is shown that a fuzzy multi-objective mission flight planner provides a viable method for embedding human expert knowledge in a computationally feasible algorithm","PeriodicalId":306422,"journal":{"name":"2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCDM.2007.369409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
This paper discusses the development of a multi-objective mission flight planning algorithm for unmanned aerial system (UAS) operations within the National Airspace System (NAS). Existing methods for multi-objective planning are largely confined to two dimensional searches and/or acyclic graphs in deterministic environments; many are computationally infeasible for large state spaces. In this paper, a multi-objective fuzzy logic decision maker is used to augment the D* Lite graph search algorithm in finding a near optimal path. This not only enables evaluation and trade-off between multiple objectives when choosing a path in three dimensional space, but also allows for the modelling of data uncertainty. A case study scenario is developed to illustrate the performance of a number of different algorithms. It is shown that a fuzzy multi-objective mission flight planner provides a viable method for embedding human expert knowledge in a computationally feasible algorithm