Generating subject oriented codec by evolutionary approach

Masaaki Matsumura, Seishi Takamura, H. Jozawa
{"title":"Generating subject oriented codec by evolutionary approach","authors":"Masaaki Matsumura, Seishi Takamura, H. Jozawa","doi":"10.1109/PCS.2010.5702512","DOIUrl":null,"url":null,"abstract":"Many image/video codecs are constructed by the combination of various coding tools such as block division/scanning, branch selection and entropy coders. Codec researchers are developing new coding tools, and seeking versatile combinations that offer improved coding efficiency for various images/videos. However, because of the huge amount of the combination, deriving the best combination is impossible by man-power seeking. In this paper, we propose an automatic optimization method for deriving the combination that suits for categorized pictures. We prepare some categorised pictures, and optimize the combination for each category. In the case of optimization for lossless image coding, our method achieves a bit-rate reduction of over 2.8% (maximum) compared to the combination that offers the best bit-rate averagely prepared beforehand.","PeriodicalId":255142,"journal":{"name":"28th Picture Coding Symposium","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"28th Picture Coding Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS.2010.5702512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Many image/video codecs are constructed by the combination of various coding tools such as block division/scanning, branch selection and entropy coders. Codec researchers are developing new coding tools, and seeking versatile combinations that offer improved coding efficiency for various images/videos. However, because of the huge amount of the combination, deriving the best combination is impossible by man-power seeking. In this paper, we propose an automatic optimization method for deriving the combination that suits for categorized pictures. We prepare some categorised pictures, and optimize the combination for each category. In the case of optimization for lossless image coding, our method achieves a bit-rate reduction of over 2.8% (maximum) compared to the combination that offers the best bit-rate averagely prepared beforehand.
用进化方法生成面向主题的编解码器
许多图像/视频编解码器是由各种编码工具如分块/扫描、分支选择和熵编码器组合而成的。编解码器研究人员正在开发新的编码工具,并寻求多种组合,以提高各种图像/视频的编码效率。然而,由于组合的数量巨大,单靠人力寻找是不可能得出最佳组合的。在本文中,我们提出了一种自动优化方法来推导适合分类图片的组合。我们准备了一些分类图片,并对每个分类的组合进行了优化。在优化无损图像编码的情况下,与提供最佳比特率的组合相比,我们的方法实现了超过2.8%(最大)的比特率降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信