SQRL: Hardware accelerator for collecting software data structures

Snehasish Kumar, Arrvindh Shriraman, V. Srinivasan, Dan Lin, J. Phillips
{"title":"SQRL: Hardware accelerator for collecting software data structures","authors":"Snehasish Kumar, Arrvindh Shriraman, V. Srinivasan, Dan Lin, J. Phillips","doi":"10.1145/2628071.2628118","DOIUrl":null,"url":null,"abstract":"Software data structures are a critical aspect of emerging data-centric applications which makes it imperative to improve the energy efficiency of data delivery. We propose SQRL, a hardware accelerator that integrates with the last-level-cache (LLC) and enables energy-efficient iterative computation on data structures. SQRL integrates a data structure-specific LLC refill engine (Collector) with a compute array of lightweight processing elements (PEs). The collector exploits knowledge of the compute kernel to i) run ahead of the PEs in a decoupled fashion to gather data objects and ii) throttle fetch rate and adaptively tile the dataset based on the locality characteristics. The collector exploits data structure knowledge to find the memory level parallelism and eliminate data structure instructions.","PeriodicalId":263670,"journal":{"name":"2014 23rd International Conference on Parallel Architecture and Compilation (PACT)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 23rd International Conference on Parallel Architecture and Compilation (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2628071.2628118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Software data structures are a critical aspect of emerging data-centric applications which makes it imperative to improve the energy efficiency of data delivery. We propose SQRL, a hardware accelerator that integrates with the last-level-cache (LLC) and enables energy-efficient iterative computation on data structures. SQRL integrates a data structure-specific LLC refill engine (Collector) with a compute array of lightweight processing elements (PEs). The collector exploits knowledge of the compute kernel to i) run ahead of the PEs in a decoupled fashion to gather data objects and ii) throttle fetch rate and adaptively tile the dataset based on the locality characteristics. The collector exploits data structure knowledge to find the memory level parallelism and eliminate data structure instructions.
用于收集软件数据结构的硬件加速器
软件数据结构是新兴的以数据为中心的应用程序的一个关键方面,这使得提高数据交付的能源效率势在必行。我们提出了SQRL,一个集成了最后一级缓存(LLC)的硬件加速器,可以在数据结构上实现高效的迭代计算。SQRL集成了一个特定于数据结构的LLC填充引擎(Collector)和一个轻量级处理元素(pe)的计算数组。收集器利用计算内核的知识,i)以解耦的方式在pe之前运行以收集数据对象,ii)限制获取速率并根据局部性特征自适应地平装数据集。收集器利用数据结构知识查找内存级并行性并消除数据结构指令。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信