Distributed Computing method for Synthetic Aperture Radar Compressed Sensing Imaging based on MapReduce

Can Zheng, Kefei Liao, Shan Ouyan, Changshu Li
{"title":"Distributed Computing method for Synthetic Aperture Radar Compressed Sensing Imaging based on MapReduce","authors":"Can Zheng, Kefei Liao, Shan Ouyan, Changshu Li","doi":"10.1109/ICEICT51264.2020.9334375","DOIUrl":null,"url":null,"abstract":"When using the compressed sensing method in Synthetic Aperture Radar(SAR) imaging, there are two major problems: long calculation time and insufficient scalability of t calculation ability. In order to solve the above problems, this paper proposes a distributed imaging method for SAR compressed sensing imaging based on MapReduce. First, the sparse data is labeled, then the range and azimuth image are reconstructed by two MapReduce calculation processes. With parallel computing advantages, the acceleration of SAR compressed sensing imaging is realized.","PeriodicalId":124337,"journal":{"name":"2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEICT51264.2020.9334375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

When using the compressed sensing method in Synthetic Aperture Radar(SAR) imaging, there are two major problems: long calculation time and insufficient scalability of t calculation ability. In order to solve the above problems, this paper proposes a distributed imaging method for SAR compressed sensing imaging based on MapReduce. First, the sparse data is labeled, then the range and azimuth image are reconstructed by two MapReduce calculation processes. With parallel computing advantages, the acceleration of SAR compressed sensing imaging is realized.
基于MapReduce的合成孔径雷达压缩感知成像分布式计算方法
在合成孔径雷达(SAR)成像中使用压缩感知方法存在两个主要问题:计算时间长和t计算能力的可扩展性不足。为了解决上述问题,本文提出了一种基于MapReduce的SAR压缩感知成像分布式成像方法。首先对稀疏数据进行标记,然后通过两次MapReduce计算重建距离和方位角图像。利用并行计算的优势,实现了SAR压缩遥感成像的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信