Sierpiński products of r-uniform hypergraphs

Mark Budden, Josh Hiller
{"title":"Sierpiński products of r-uniform hypergraphs","authors":"Mark Budden, Josh Hiller","doi":"10.26493/2590-9770.1402.D50","DOIUrl":null,"url":null,"abstract":"If H1 and H2 are r-uniform hypergraphs and f is a function from the set of all (r − 1)-element subsets of V(H1) into V(H2), then the Sierpinski product H1⊗fH2 is defined to have vertex set V(H1) × V(H2) and hyperedges falling into two classes: (g, h1)(g, h2)⋯(g, hr), such that g ∈ V(H1) and h1h2⋯hr ∈ E(H2),and (g1, f({g2, g3, …, gr}))(g2, f({g1, g3, …, gr}))⋯(gr, f({g1, g2, …, gr − 1})),such that g1g2⋯gr ∈ E(H1). We develop the basic structure possessed by this product and offer proofs of numerous extremal properties involving connectivity, clique numbers, and strong chromatic numbers.","PeriodicalId":236892,"journal":{"name":"Art Discret. Appl. Math.","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Art Discret. Appl. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/2590-9770.1402.D50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

If H1 and H2 are r-uniform hypergraphs and f is a function from the set of all (r − 1)-element subsets of V(H1) into V(H2), then the Sierpinski product H1⊗fH2 is defined to have vertex set V(H1) × V(H2) and hyperedges falling into two classes: (g, h1)(g, h2)⋯(g, hr), such that g ∈ V(H1) and h1h2⋯hr ∈ E(H2),and (g1, f({g2, g3, …, gr}))(g2, f({g1, g3, …, gr}))⋯(gr, f({g1, g2, …, gr − 1})),such that g1g2⋯gr ∈ E(H1). We develop the basic structure possessed by this product and offer proofs of numerous extremal properties involving connectivity, clique numbers, and strong chromatic numbers.
Sierpiński r-一致超图的乘积
如果H1和H2是r-一致超图,f是V(H1)到V(H2)的所有(r−1)元素子集集合的函数,则Sierpinski积H1⊗fH2定义为具有顶点集V(H1) × V(H2)和超边分为两类:(g, H1) (g, H2)⋯(g, hr),使得g∈V(H1)和h1h2⋯hr∈E(H2),以及(g1, f({g1, g3,…,gr}))(g2, f({g1, g3,…,gr}))⋯(gr, f({g1, g2,…,gr−1})),使得g1g2⋯gr∈E(H1)。我们开发了该产品所具有的基本结构,并提供了涉及连通性,团数和强色数的许多极值性质的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信