A Spatial Autoregressive Combination Stochastic Frontier Model Separating Spatial Dependence in the Frontier and in Technical Inefficiency

T. Tsukamoto
{"title":"A Spatial Autoregressive Combination Stochastic Frontier Model Separating Spatial Dependence in the Frontier and in Technical Inefficiency","authors":"T. Tsukamoto","doi":"10.2139/ssrn.3306953","DOIUrl":null,"url":null,"abstract":"We identify the attributes and limitations of spatial autoregressive stochastic frontier models, spatial inefficiency error stochastic frontier models, and straightforward integrated models. We also propose a separable spatial autoregressive combination stochastic frontier model that overcomes the limitations. The proposed model’s main features are as follows: (a) spatial dependence in the frontier and in technical inefficiency are separately identified; (b) a negative spatial autocorrelation in technical inefficiency is permitted; (c) technical inefficiency follows a truncated-normal distribution.","PeriodicalId":191102,"journal":{"name":"ERN: Time-Series Models (Multiple) (Topic)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Time-Series Models (Multiple) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3306953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We identify the attributes and limitations of spatial autoregressive stochastic frontier models, spatial inefficiency error stochastic frontier models, and straightforward integrated models. We also propose a separable spatial autoregressive combination stochastic frontier model that overcomes the limitations. The proposed model’s main features are as follows: (a) spatial dependence in the frontier and in technical inefficiency are separately identified; (b) a negative spatial autocorrelation in technical inefficiency is permitted; (c) technical inefficiency follows a truncated-normal distribution.
分离边界和技术无效率空间依赖的空间自回归组合随机前沿模型
研究了空间自回归随机前沿模型、空间无效率误差随机前沿模型和直接集成模型的属性和局限性。我们还提出了一种可分离空间自回归组合随机前沿模型,克服了该模型的局限性。该模型的主要特征是:(a)边界空间依赖性和技术无效率性的空间依赖性分别被识别;(b)允许技术无效率的负空间自相关;(c)技术无效率服从截断正态分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信