On the Spheroidal Semiseparation for Stokes Flow

G. Dassios, P. Vafeas
{"title":"On the Spheroidal Semiseparation for Stokes Flow","authors":"G. Dassios, P. Vafeas","doi":"10.1155/2008/135289","DOIUrl":null,"url":null,"abstract":"Many heat and mass transport problems involve particle-fluid systems, where the assumption of Stokes flow provides a very good approximation for representing small particles embedded within a viscous, incompressible fluid characterizing the steady, creeping flow. The present work is concerned with some interesting practical aspects of the theoretical analysis of Stokes flow in spheroidal domains. The stream function 𝜓, for axisymmetric Stokes flow, satisfies the well-known equation 𝐸4𝜓=0. Despite the fact that in spherical coordinates this equation admits separable solutions, this property is not preserved when one seeks solutions in the spheroidal geometry. Nevertheless, defining some kind of semiseparability, the complete solution for 𝜓 in spheroidal coordinates has been obtained in the form of products combining Gegenbauer functions of different degrees. Thus, the general solution is represented in a full-series expansion in terms of eigenfunctions, which are elements of the space 𝑘𝑒𝑟𝐸2 (separable solutions), and in terms of generalized eigenfunctions, which are elements of the space 𝑘𝑒𝑟𝐸4 (semiseparable solutions). In this work we revisit this aspect by introducing a different and simpler way of representing the aforementioned generalized eigenfunctions. Consequently, additional semiseparable solutions are provided in terms of the Gegenbauer functions, whereas the completeness is preserved and the full-series expansion is rewritten in terms of these functions.","PeriodicalId":341677,"journal":{"name":"Research Letters in Physics","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Letters in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2008/135289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Many heat and mass transport problems involve particle-fluid systems, where the assumption of Stokes flow provides a very good approximation for representing small particles embedded within a viscous, incompressible fluid characterizing the steady, creeping flow. The present work is concerned with some interesting practical aspects of the theoretical analysis of Stokes flow in spheroidal domains. The stream function 𝜓, for axisymmetric Stokes flow, satisfies the well-known equation 𝐸4𝜓=0. Despite the fact that in spherical coordinates this equation admits separable solutions, this property is not preserved when one seeks solutions in the spheroidal geometry. Nevertheless, defining some kind of semiseparability, the complete solution for 𝜓 in spheroidal coordinates has been obtained in the form of products combining Gegenbauer functions of different degrees. Thus, the general solution is represented in a full-series expansion in terms of eigenfunctions, which are elements of the space 𝑘𝑒𝑟𝐸2 (separable solutions), and in terms of generalized eigenfunctions, which are elements of the space 𝑘𝑒𝑟𝐸4 (semiseparable solutions). In this work we revisit this aspect by introducing a different and simpler way of representing the aforementioned generalized eigenfunctions. Consequently, additional semiseparable solutions are provided in terms of the Gegenbauer functions, whereas the completeness is preserved and the full-series expansion is rewritten in terms of these functions.
关于Stokes流的球形半分离
许多热量和质量传递问题涉及到颗粒-流体系统,其中斯托克斯流的假设为表示嵌入粘性不可压缩流体中的小颗粒提供了一个很好的近似,表征了稳定的蠕动流动。本文讨论了椭球域中斯托克斯流理论分析中一些有趣的实际问题。对于轴对称斯托克斯流,流函数,满足众所周知的等式𝐸4, =0。尽管在球坐标中,这个方程承认可分离解,但当在球面几何中寻求解时,这个性质就不保留了。然而,在定义了某种半可分性的情况下,以不同程度的Gegenbauer函数的乘积形式得到了球面坐标系中变量的完全解。因此,通解在全级数展开式中表示为特征函数,特征函数是空间𝑘𝑒𝑟𝐸2的元素(可分离解),广义特征函数是空间𝑘𝑒𝑟𝐸4的元素(半可分离解)。在这项工作中,我们通过引入一种不同的和更简单的方式来表示上述广义特征函数来重新审视这方面。因此,给出了用Gegenbauer函数表示的附加半可分解,同时保留了完备性,并用这些函数重写了全级数展开式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信