D. Puschini, F. Clermidy, P. Benoit, G. Sassatelli, L. Torres
{"title":"Convergence analysis of run-time distributed optimization on adaptive systems using game theory","authors":"D. Puschini, F. Clermidy, P. Benoit, G. Sassatelli, L. Torres","doi":"10.1109/FPL.2008.4630007","DOIUrl":null,"url":null,"abstract":"We consider multiprocessor system-on-chip (MP-SoC) integrating several processing elements (PE). These architectures require distributed and scalable control techniques for run-time optimization of applicative parameters. Our approach is to use the game theory as an optimization model to solve the trade-off issues at run-time. We applied it to the distributed dynamic voltage frequency scaling (DVFS) management, adjusting at run-time the frequency set of each PE based on the synchronization between tasks of the application graph and the PE temperature profile. Results show that the analyzed algorithm converges to a solution in about 94% of the cases and in less than 40 calculation cycles for a 100-processor MP-SoC. It reaches an average optimization of 89% compared to an off-line centralized reference but about 140 times faster when simulating.","PeriodicalId":137963,"journal":{"name":"2008 International Conference on Field Programmable Logic and Applications","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Field Programmable Logic and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPL.2008.4630007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We consider multiprocessor system-on-chip (MP-SoC) integrating several processing elements (PE). These architectures require distributed and scalable control techniques for run-time optimization of applicative parameters. Our approach is to use the game theory as an optimization model to solve the trade-off issues at run-time. We applied it to the distributed dynamic voltage frequency scaling (DVFS) management, adjusting at run-time the frequency set of each PE based on the synchronization between tasks of the application graph and the PE temperature profile. Results show that the analyzed algorithm converges to a solution in about 94% of the cases and in less than 40 calculation cycles for a 100-processor MP-SoC. It reaches an average optimization of 89% compared to an off-line centralized reference but about 140 times faster when simulating.