Size Efficient Key-Value Type Context Sharing in Mobile Edge Computing

Samuel Sungmin Cho, Myoungkyu Song
{"title":"Size Efficient Key-Value Type Context Sharing in Mobile Edge Computing","authors":"Samuel Sungmin Cho, Myoungkyu Song","doi":"10.1109/EIT51626.2021.9491881","DOIUrl":null,"url":null,"abstract":"Mobile Edge Computing (MEC) aims to extend the edge of cloud computing networks in remote servers. MEC promises advantages such as fast response time and balancing processing load because MEC devices can process the information between the user devices and cloud servers intelligently and dynamically depending on the situation. An increasing number of Internet of Things (IoT) devices share information with cloud servers. MEC can address issues arising from situations where billions of IoT devices share information with other devices, MEC, and cloud servers. In this case, a load balancing model and architecture are needed for better storage and communication bandwidth control to avoid problems such as data congestion among MEC servers. Considering that the Key-value type context is one of the most popular representations for IoT information sharing, a new approach to address the communication load imbalance in MEC is needed. This paper proposes a novel model and architecture to share key-value type context among mobile devices, cloud servers, and MEC servers. We use probabilistic data structures, Bloomier Filters, to reduce the key-value type information footprint. The data quality degradation caused by false positives can be controlled and eliminated with a particular type of Bloomier filter and a common dictionary shared by devices and servers. We analyze our approach to show the proposed model’s performance, architecture, and algorithm, demonstrating that we can reduce the footprint size to represent the key-value type context information with zero or practically zero data degradation.","PeriodicalId":162816,"journal":{"name":"2021 IEEE International Conference on Electro Information Technology (EIT)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Electro Information Technology (EIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIT51626.2021.9491881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mobile Edge Computing (MEC) aims to extend the edge of cloud computing networks in remote servers. MEC promises advantages such as fast response time and balancing processing load because MEC devices can process the information between the user devices and cloud servers intelligently and dynamically depending on the situation. An increasing number of Internet of Things (IoT) devices share information with cloud servers. MEC can address issues arising from situations where billions of IoT devices share information with other devices, MEC, and cloud servers. In this case, a load balancing model and architecture are needed for better storage and communication bandwidth control to avoid problems such as data congestion among MEC servers. Considering that the Key-value type context is one of the most popular representations for IoT information sharing, a new approach to address the communication load imbalance in MEC is needed. This paper proposes a novel model and architecture to share key-value type context among mobile devices, cloud servers, and MEC servers. We use probabilistic data structures, Bloomier Filters, to reduce the key-value type information footprint. The data quality degradation caused by false positives can be controlled and eliminated with a particular type of Bloomier filter and a common dictionary shared by devices and servers. We analyze our approach to show the proposed model’s performance, architecture, and algorithm, demonstrating that we can reduce the footprint size to represent the key-value type context information with zero or practically zero data degradation.
移动边缘计算中高效键值类型上下文共享
移动边缘计算(MEC)旨在在远程服务器上扩展云计算网络的边缘。由于MEC设备可以根据情况智能动态地处理用户设备和云服务器之间的信息,因此MEC具有快速响应时间和平衡处理负载等优势。越来越多的物联网(IoT)设备与云服务器共享信息。MEC可以解决数十亿物联网设备与其他设备、MEC和云服务器共享信息的情况下出现的问题。在这种情况下,需要一个负载均衡模型和架构来更好地控制存储和通信带宽,以避免MEC服务器之间的数据拥塞等问题。考虑到Key-value类型上下文是物联网信息共享最流行的表示之一,需要一种新的方法来解决MEC中通信负载不平衡的问题。本文提出了一种在移动设备、云服务器和MEC服务器之间共享键值类型上下文的新模型和架构。我们使用概率数据结构,Bloomier过滤器,来减少键值类型的信息占用。假阳性引起的数据质量下降可以通过特定类型的布卢姆耶滤波器和设备和服务器共享的公共字典来控制和消除。我们分析了我们的方法,以显示所建议的模型的性能、体系结构和算法,并证明我们可以在零或几乎零数据退化的情况下减少内存占用大小来表示键值类型上下文信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信