A Case Study in Multi-Emotion Classification via Twitter

S. S. Ibrahiem, S. Ismail, K. Bahnasy, M. Aref
{"title":"A Case Study in Multi-Emotion Classification via Twitter","authors":"S. S. Ibrahiem, S. Ismail, K. Bahnasy, M. Aref","doi":"10.1109/ICEENG45378.2020.9171768","DOIUrl":null,"url":null,"abstract":"Social media platforms generate continuously tremendous quantities of valuable knowledge for users’ perspectives towards our global societies for example, Twitter. Sentiment analysis reveals its vital role to take the advantage of these different perspectives for different applications like, political votes, business domains, financial risks, and etc. Most traditional approaches in sentiment analysis predict a single attitude from the users’ tweets. This is not considered a quiet correct approach, due to multiple of implied feelings in the users’ tweets towards a specific topic, person, or event. This research presents hybrid machine learning approach, that can predict multiple feelings in the same tweet. It applies two methods, which are Binary relevance based on four machine learning algorithms in addition to Convolutional neural networks. The tweets preprocessed and converted into feature vectors. Word embedding, emotion lexicons, and frequency distribution probability are used to extract features from the input tweets. The paper finally presents a case study of two experiments to show the multi emotion prediction classifiers workflow on real tweets. The applied dataset is on SemEval2018 Task E-c. Binary relevance method has hamming score 0.53, and Convolutional neural network method has score 0.54.","PeriodicalId":346636,"journal":{"name":"2020 12th International Conference on Electrical Engineering (ICEENG)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 12th International Conference on Electrical Engineering (ICEENG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEENG45378.2020.9171768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Social media platforms generate continuously tremendous quantities of valuable knowledge for users’ perspectives towards our global societies for example, Twitter. Sentiment analysis reveals its vital role to take the advantage of these different perspectives for different applications like, political votes, business domains, financial risks, and etc. Most traditional approaches in sentiment analysis predict a single attitude from the users’ tweets. This is not considered a quiet correct approach, due to multiple of implied feelings in the users’ tweets towards a specific topic, person, or event. This research presents hybrid machine learning approach, that can predict multiple feelings in the same tweet. It applies two methods, which are Binary relevance based on four machine learning algorithms in addition to Convolutional neural networks. The tweets preprocessed and converted into feature vectors. Word embedding, emotion lexicons, and frequency distribution probability are used to extract features from the input tweets. The paper finally presents a case study of two experiments to show the multi emotion prediction classifiers workflow on real tweets. The applied dataset is on SemEval2018 Task E-c. Binary relevance method has hamming score 0.53, and Convolutional neural network method has score 0.54.
基于Twitter的多情绪分类案例研究
社交媒体平台不断产生大量有价值的知识,让用户对我们的全球社会有不同的看法,比如Twitter。情感分析揭示了它的重要作用,可以利用这些不同的视角来分析不同的应用,比如政治投票、商业领域、金融风险等等。大多数传统的情感分析方法都是从用户的推文中预测出一种态度。这并不是一种非常正确的方法,因为用户的推文对特定的主题、人物或事件有多种隐含的感觉。这项研究提出了混合机器学习方法,可以预测同一条推文中的多种感受。它采用了两种方法,即基于四种机器学习算法和卷积神经网络的二进制关联。对推文进行预处理并转换为特征向量。使用词嵌入、情感词汇和频率分布概率从输入tweets中提取特征。最后以两个实验为例,展示了多情感预测分类器在真实推文上的工作流程。应用的数据集在SemEval2018任务E-c上。二值关联方法的汉明评分为0.53,卷积神经网络方法的汉明评分为0.54。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信