{"title":"Compensation methods applied in current control schemes for large AC drive systems","authors":"D. Rus, N. S. Preda, R. Teodorescu, M. Imecs","doi":"10.1109/OPTIM.2012.6231934","DOIUrl":null,"url":null,"abstract":"The paper deals with modified PI current control structures for large AC drive systems which use surface mounted permanent magnet synchronous machines or squirrel-cage induction motors supplied with voltage source inverters. In order to reduce the power losses caused by high frequency switching of the semiconductor devices, various compensation methods are used and a modified structure for a PI current controller is proposed, to reduce the switching frequency of the inverter for the same operating frequency of the drive. Simulation, experimental development and test results are presented in order to demonstrate the capabilities of the control procedure.","PeriodicalId":382406,"journal":{"name":"2012 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OPTIM.2012.6231934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The paper deals with modified PI current control structures for large AC drive systems which use surface mounted permanent magnet synchronous machines or squirrel-cage induction motors supplied with voltage source inverters. In order to reduce the power losses caused by high frequency switching of the semiconductor devices, various compensation methods are used and a modified structure for a PI current controller is proposed, to reduce the switching frequency of the inverter for the same operating frequency of the drive. Simulation, experimental development and test results are presented in order to demonstrate the capabilities of the control procedure.