Rapid Design and Exploration of High-Fidelity Low-Thrust Transfers to the Moon

Jackson L. Shannon, M. Ozimek, J. Atchison, C. Hartzell
{"title":"Rapid Design and Exploration of High-Fidelity Low-Thrust Transfers to the Moon","authors":"Jackson L. Shannon, M. Ozimek, J. Atchison, C. Hartzell","doi":"10.1109/AERO47225.2020.9172483","DOIUrl":null,"url":null,"abstract":"Spiral trajectories to the Moon present a difficult trajectory design problem. In this paper we show that the well-known Q-Law guidance algorithm can be leveraged to rapidly produce near optimal, high fidelity trajectories. By combining forward and backward propagated Q-Law, continuous trajectories are generated from an Earth parking orbit to a target Lunar orbit. The Q-Law result can then be refined using direct collocation. To demonstrate this process, we solve a problem inspired by the SMART-1 mission and compare to literature results. Then, an ESPA-class mission scenario is analyzed. We demonstrate that this technique can be used to efficiently explore the trajectory trade space and provide suitable initial guesses for direct optimization.","PeriodicalId":114560,"journal":{"name":"2020 IEEE Aerospace Conference","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO47225.2020.9172483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Spiral trajectories to the Moon present a difficult trajectory design problem. In this paper we show that the well-known Q-Law guidance algorithm can be leveraged to rapidly produce near optimal, high fidelity trajectories. By combining forward and backward propagated Q-Law, continuous trajectories are generated from an Earth parking orbit to a target Lunar orbit. The Q-Law result can then be refined using direct collocation. To demonstrate this process, we solve a problem inspired by the SMART-1 mission and compare to literature results. Then, an ESPA-class mission scenario is analyzed. We demonstrate that this technique can be used to efficiently explore the trajectory trade space and provide suitable initial guesses for direct optimization.
高保真低推力月球传输的快速设计与探索
到月球的螺旋轨道是一个复杂的轨道设计问题。在本文中,我们证明了众所周知的q律制导算法可以被用来快速产生接近最优的、高保真的轨迹。通过结合前向和后向传播q律,生成了从地球停泊轨道到目标月球轨道的连续轨迹。然后可以使用直接搭配来改进q定律的结果。为了演示这一过程,我们解决了一个受SMART-1任务启发的问题,并与文献结果进行了比较。然后,对espa级任务场景进行了分析。我们证明了这种技术可以有效地探索轨迹交易空间,并为直接优化提供合适的初始猜测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信