Jackson L. Shannon, M. Ozimek, J. Atchison, C. Hartzell
{"title":"Rapid Design and Exploration of High-Fidelity Low-Thrust Transfers to the Moon","authors":"Jackson L. Shannon, M. Ozimek, J. Atchison, C. Hartzell","doi":"10.1109/AERO47225.2020.9172483","DOIUrl":null,"url":null,"abstract":"Spiral trajectories to the Moon present a difficult trajectory design problem. In this paper we show that the well-known Q-Law guidance algorithm can be leveraged to rapidly produce near optimal, high fidelity trajectories. By combining forward and backward propagated Q-Law, continuous trajectories are generated from an Earth parking orbit to a target Lunar orbit. The Q-Law result can then be refined using direct collocation. To demonstrate this process, we solve a problem inspired by the SMART-1 mission and compare to literature results. Then, an ESPA-class mission scenario is analyzed. We demonstrate that this technique can be used to efficiently explore the trajectory trade space and provide suitable initial guesses for direct optimization.","PeriodicalId":114560,"journal":{"name":"2020 IEEE Aerospace Conference","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO47225.2020.9172483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Spiral trajectories to the Moon present a difficult trajectory design problem. In this paper we show that the well-known Q-Law guidance algorithm can be leveraged to rapidly produce near optimal, high fidelity trajectories. By combining forward and backward propagated Q-Law, continuous trajectories are generated from an Earth parking orbit to a target Lunar orbit. The Q-Law result can then be refined using direct collocation. To demonstrate this process, we solve a problem inspired by the SMART-1 mission and compare to literature results. Then, an ESPA-class mission scenario is analyzed. We demonstrate that this technique can be used to efficiently explore the trajectory trade space and provide suitable initial guesses for direct optimization.