{"title":"A computer code for fitting exponential decay curves with \"small\" relative error","authors":"J. Pleasant","doi":"10.1145/503643.503688","DOIUrl":null,"url":null,"abstract":"A p r a c t l c a l p rocedure f o r d e t e r m i n i n g v a l u e s f o r t l , . . . , t n . 1 i n the p l e c e w l s e e x p o n e n t l a l app rox ima t ion (2) i s to draw a graph o f y = F ( t ) on s e m i l o g a r i t h m i c graph paper . S ince the graph s t of an exponentlal functlon y ce on such a scale is s s t ra ight l ine , the problem of f i t t i n g a p l e c e w l s e e x p o n e n t i a l f u n c t i o n to y = F(t) i s e s s e n t l s l l y the same v i s u a l l y as t h a t o f f i t t i n g a p l e c e w i s e l l n e a r f u n c t i o n on a l l n e s ~ s c a l e . We choose p o i n t s Po(O, F(o)) , P l ( t l , F ( t l ) ) . . . . , Pn(tn, F(tn)) on t h e curve y = F ( t ) so t h a t the segments","PeriodicalId":166583,"journal":{"name":"Proceedings of the 16th annual Southeast regional conference","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1978-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th annual Southeast regional conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/503643.503688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A p r a c t l c a l p rocedure f o r d e t e r m i n i n g v a l u e s f o r t l , . . . , t n . 1 i n the p l e c e w l s e e x p o n e n t l a l app rox ima t ion (2) i s to draw a graph o f y = F ( t ) on s e m i l o g a r i t h m i c graph paper . S ince the graph s t of an exponentlal functlon y ce on such a scale is s s t ra ight l ine , the problem of f i t t i n g a p l e c e w l s e e x p o n e n t i a l f u n c t i o n to y = F(t) i s e s s e n t l s l l y the same v i s u a l l y as t h a t o f f i t t i n g a p l e c e w i s e l l n e a r f u n c t i o n on a l l n e s ~ s c a l e . We choose p o i n t s Po(O, F(o)) , P l ( t l , F ( t l ) ) . . . . , Pn(tn, F(tn)) on t h e curve y = F ( t ) so t h a t the segments