Improved Iteration FCM Algorithm for MapReduce Research

M. J. M. Kiki, Zhang Jianbiao, Adolphe Bonzou Kouassi
{"title":"Improved Iteration FCM Algorithm for MapReduce Research","authors":"M. J. M. Kiki, Zhang Jianbiao, Adolphe Bonzou Kouassi","doi":"10.1145/3291842.3291889","DOIUrl":null,"url":null,"abstract":"Aiming at the iterative characteristics of the clustering process of fuzzy C-means clustering (CLUSTERING, FCM) algorithm, an iterative MapReduce model is used for FCM. The algorithm is optimized, the map function calculates the membership degree of each sample to the cluster center, the reduce function receives the new cluster center of the middle output of the map function, and the transfer module transmits the newest cluster center to the original map task node for the new round of mapreduce job; iterative The MapReduce model adds a transfer module to the MapReduce basic model, which effectively solves the deficiencies of the basic model in dealing with the iterative problem. In the Hadoop platform, we use FCM based on the iterative MapReduce and MapReduce basic models, respectively. The algorithm is used to diagnose the transformer; the experimental results show that the diagnostic speed of FCM algorithm based on iterative mapreduce is more than 12 times of the MapReduce basic model algorithm, the misjudgment rate is lower 12 to 15 percent, and the diagnostic efficiency of FCM algorithm is improved effectively.","PeriodicalId":283197,"journal":{"name":"Proceedings of the 2nd International Conference on Telecommunications and Communication Engineering","volume":"156 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Conference on Telecommunications and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3291842.3291889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Aiming at the iterative characteristics of the clustering process of fuzzy C-means clustering (CLUSTERING, FCM) algorithm, an iterative MapReduce model is used for FCM. The algorithm is optimized, the map function calculates the membership degree of each sample to the cluster center, the reduce function receives the new cluster center of the middle output of the map function, and the transfer module transmits the newest cluster center to the original map task node for the new round of mapreduce job; iterative The MapReduce model adds a transfer module to the MapReduce basic model, which effectively solves the deficiencies of the basic model in dealing with the iterative problem. In the Hadoop platform, we use FCM based on the iterative MapReduce and MapReduce basic models, respectively. The algorithm is used to diagnose the transformer; the experimental results show that the diagnostic speed of FCM algorithm based on iterative mapreduce is more than 12 times of the MapReduce basic model algorithm, the misjudgment rate is lower 12 to 15 percent, and the diagnostic efficiency of FCM algorithm is improved effectively.
MapReduce研究中的改进迭代FCM算法
针对模糊c均值聚类(clustering, FCM)算法聚类过程的迭代特点,采用迭代MapReduce模型进行聚类。对算法进行优化,map函数计算每个样本对聚类中心的隶属度,reduce函数接收map函数中间输出的新聚类中心,传输模块将最新的聚类中心传输到原地图任务节点进行新一轮的mapreduce作业;MapReduce模型在MapReduce基本模型的基础上增加了迁移模块,有效解决了基本模型在处理迭代问题方面的不足。在Hadoop平台上,我们分别使用基于迭代MapReduce和MapReduce基本模型的FCM。将该算法用于变压器的故障诊断;实验结果表明,基于迭代mapreduce的FCM算法的诊断速度是mapreduce基本模型算法的12倍以上,误判率降低了12 ~ 15%,有效提高了FCM算法的诊断效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信