Predicting the Fineness of Raw Mill Finished Products on the Basis of KPCA-SVM

Shu Yunxing, Yun Shiwei, Ge Bo
{"title":"Predicting the Fineness of Raw Mill Finished Products on the Basis of KPCA-SVM","authors":"Shu Yunxing, Yun Shiwei, Ge Bo","doi":"10.1109/ICINIS.2008.48","DOIUrl":null,"url":null,"abstract":"Combining kernel principal component analysis (KPCA) and support vector machines (SVM) in this study, we set up a KPCA-SVM model to predict the fineness of raw mill finished products. We conducted nonlinear feature extraction from the technological parameter samples of the raw mill by means of KPCA and obtained the feature principal components that are easier for regression operations. Thus, the number of input space dimensions that can lower the SVM was met. Then we conducted training by using the least squares support vector machines (LS-SVM). Finally, our computation results proved that the model proposed in this study can effectively predict the fineness of raw mill finished products.","PeriodicalId":185739,"journal":{"name":"2008 First International Conference on Intelligent Networks and Intelligent Systems","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 First International Conference on Intelligent Networks and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINIS.2008.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Combining kernel principal component analysis (KPCA) and support vector machines (SVM) in this study, we set up a KPCA-SVM model to predict the fineness of raw mill finished products. We conducted nonlinear feature extraction from the technological parameter samples of the raw mill by means of KPCA and obtained the feature principal components that are easier for regression operations. Thus, the number of input space dimensions that can lower the SVM was met. Then we conducted training by using the least squares support vector machines (LS-SVM). Finally, our computation results proved that the model proposed in this study can effectively predict the fineness of raw mill finished products.
基于KPCA-SVM的粗磨成品细度预测
本研究将核主成分分析(KPCA)与支持向量机(SVM)相结合,建立了核主成分-支持向量机(KPCA -SVM)模型来预测磨矿成品细度。利用KPCA对原磨机的工艺参数样本进行非线性特征提取,得到了便于回归操作的特征主成分。从而满足降低支持向量机的输入空间维数。然后利用最小二乘支持向量机(LS-SVM)进行训练。最后,计算结果表明,本文提出的模型能够有效地预测粗磨成品细度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信