Joint Driver Intention Classification and Tracking of Vehicles

J. Gunnarsson, L. Svensson, E. Bengtsson, L. Danielsson
{"title":"Joint Driver Intention Classification and Tracking of Vehicles","authors":"J. Gunnarsson, L. Svensson, E. Bengtsson, L. Danielsson","doi":"10.1109/NSSPW.2006.4378828","DOIUrl":null,"url":null,"abstract":"In this paper we present and validate a new modelling frame-work for joint driver intention classification and tracking of vehicles, a framework derived for automotive active safety systems. Such systems require reliable predictions of the traffic situation to act in time when a dangerous situation occur. Our proposal has two main benefits. First, it incorporates the intention of the driver into the vehicle motion model and thereby improves the prediction capability. The result is a multiple motion model where each model corresponds to a specific driver intent. Second, the connection between different driver plans and corresponding motion model enables a formal classification of the most likely driver intention. To validate our concept, we apply the motion model on real data using a particle filter implementation. Initial studies indicate promising performance.","PeriodicalId":388611,"journal":{"name":"2006 IEEE Nonlinear Statistical Signal Processing Workshop","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Nonlinear Statistical Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSPW.2006.4378828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

In this paper we present and validate a new modelling frame-work for joint driver intention classification and tracking of vehicles, a framework derived for automotive active safety systems. Such systems require reliable predictions of the traffic situation to act in time when a dangerous situation occur. Our proposal has two main benefits. First, it incorporates the intention of the driver into the vehicle motion model and thereby improves the prediction capability. The result is a multiple motion model where each model corresponds to a specific driver intent. Second, the connection between different driver plans and corresponding motion model enables a formal classification of the most likely driver intention. To validate our concept, we apply the motion model on real data using a particle filter implementation. Initial studies indicate promising performance.
联合驾驶员意图分类与车辆跟踪
在本文中,我们提出并验证了一个新的建模框架,用于联合驾驶员意图分类和车辆跟踪,这是一个衍生于汽车主动安全系统的框架。这种系统需要可靠的交通状况预测,以便在危险情况发生时及时采取行动。我们的建议有两个主要好处。首先,将驾驶员的意图融入到车辆运动模型中,从而提高了预测能力。结果是一个多运动模型,其中每个模型对应于一个特定的驾驶员意图。其次,不同的驾驶员计划和相应的运动模型之间的联系可以对最可能的驾驶员意图进行正式分类。为了验证我们的概念,我们使用粒子滤波实现将运动模型应用于实际数据。初步研究表明,该产品具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信