Community Detection Metrics and Algorithms in Social Networks

Himansu Sekhar Pattanayak, H. Verma, A. L. Sangal
{"title":"Community Detection Metrics and Algorithms in Social Networks","authors":"Himansu Sekhar Pattanayak, H. Verma, A. L. Sangal","doi":"10.1109/ICSCCC.2018.8703215","DOIUrl":null,"url":null,"abstract":"Community detection is one of the key areas of social network analysis. There are various community detection algorithms available in the literature. Numerous community metrics are also available to evaluate the detected communities. In our study, by using synthetic networks, we compare between four well known community metrics, namely; modularity, conductance, coverage and performance. We also compare seven different community detection algorithms based on above mentioned parameters.","PeriodicalId":148491,"journal":{"name":"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCCC.2018.8703215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Community detection is one of the key areas of social network analysis. There are various community detection algorithms available in the literature. Numerous community metrics are also available to evaluate the detected communities. In our study, by using synthetic networks, we compare between four well known community metrics, namely; modularity, conductance, coverage and performance. We also compare seven different community detection algorithms based on above mentioned parameters.
社交网络中的社区检测指标和算法
社区检测是社会网络分析的关键领域之一。文献中有各种各样的社区检测算法。还有许多社区指标可用于评估检测到的社区。在我们的研究中,通过使用合成网络,我们比较了四个众所周知的社区指标,即;模块化、电导、覆盖和性能。我们还比较了基于上述参数的7种不同的社区检测算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信