{"title":"Removing contaminated data for illumination-robust face recognition","authors":"Zhen Xu, Zongqing Lu, Weifeng Li, Q. Liao","doi":"10.1109/IWSSIP.2017.7965577","DOIUrl":null,"url":null,"abstract":"Recently low-rank matrix decomposition (LR) and sparse representation classification (SRC) have been successfully applied to address the problem of face recognition. Low-rank matrix decomposition is employed as the first step of robust principal component analysis (RPCA), it is robust to illumination-contaminated image data. In this paper, we propose a novel method based on low-rank decomposition and sparse representation classification which is more robust to illumination-contaminated data. This method is a kind of test-data-drive illumination-robust face recognition. Our experimental results demonstrate the effectiveness of our proposed method.","PeriodicalId":302860,"journal":{"name":"2017 International Conference on Systems, Signals and Image Processing (IWSSIP)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Systems, Signals and Image Processing (IWSSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSSIP.2017.7965577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Recently low-rank matrix decomposition (LR) and sparse representation classification (SRC) have been successfully applied to address the problem of face recognition. Low-rank matrix decomposition is employed as the first step of robust principal component analysis (RPCA), it is robust to illumination-contaminated image data. In this paper, we propose a novel method based on low-rank decomposition and sparse representation classification which is more robust to illumination-contaminated data. This method is a kind of test-data-drive illumination-robust face recognition. Our experimental results demonstrate the effectiveness of our proposed method.