Empirical signal decomposition for acoustic noise detection

L. Zão, R. Coelho
{"title":"Empirical signal decomposition for acoustic noise detection","authors":"L. Zão, R. Coelho","doi":"10.1109/SAM.2016.7569740","DOIUrl":null,"url":null,"abstract":"This paper introduces an adaptive noise detection method for non-stationary acoustic noisy signals. The proposed approach is based on the empirical mode decomposition (EMD) and a vector of Hurst exponent coefficients. The scheme is investigated considering real acoustic noisy signals with different non-stationarity degree and signal-to-noise ratio (SNR). The results demonstrate that the EMD-based noise detector enables a better separation between the clean and noisy signals when compared to the competing methods. It also leads to an average SNR improvement of 4.4 dB for the resulting enhanced signals.","PeriodicalId":159236,"journal":{"name":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"188 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2016.7569740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper introduces an adaptive noise detection method for non-stationary acoustic noisy signals. The proposed approach is based on the empirical mode decomposition (EMD) and a vector of Hurst exponent coefficients. The scheme is investigated considering real acoustic noisy signals with different non-stationarity degree and signal-to-noise ratio (SNR). The results demonstrate that the EMD-based noise detector enables a better separation between the clean and noisy signals when compared to the competing methods. It also leads to an average SNR improvement of 4.4 dB for the resulting enhanced signals.
基于经验信号分解的噪声检测
介绍了一种针对非平稳噪声信号的自适应噪声检测方法。该方法基于经验模态分解(EMD)和Hurst指数系数向量。考虑不同非平稳性和信噪比的实际噪声信号,对该方案进行了研究。结果表明,与竞争方法相比,基于emd的噪声检测器能够更好地分离干净信号和噪声信号。它还导致由此产生的增强信号的平均信噪比提高4.4 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信