Integrating machine learning in embedded sensor systems for Internet-of-Things applications

Jongmin Lee, M. Stanley, A. Spanias, C. Tepedelenlioğlu
{"title":"Integrating machine learning in embedded sensor systems for Internet-of-Things applications","authors":"Jongmin Lee, M. Stanley, A. Spanias, C. Tepedelenlioğlu","doi":"10.1109/ISSPIT.2016.7886051","DOIUrl":null,"url":null,"abstract":"Interpreting sensor data in Internet-of-Things applications is a challenging problem particularly in embedded systems. We consider sensor data analytics where machine learning algorithms can be fully implemented on an embedded processor/sensor board. We develop an efficient real-time realization of a Gaussian mixture model (GMM) for execution on the NXP FRDM-K64F embedded sensor board. We demonstrate the design of a customized program and data structure that generates real-time sensor features, and we show details and training/classification results for select IoT applications. The integrated hardware/software system enables real-time data analytics and continuous training and re-training of the machine learning (ML) algorithm. The real-time ML platform can accommodate several applications with lower sensor data traffic.","PeriodicalId":371691,"journal":{"name":"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2016.7886051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

Interpreting sensor data in Internet-of-Things applications is a challenging problem particularly in embedded systems. We consider sensor data analytics where machine learning algorithms can be fully implemented on an embedded processor/sensor board. We develop an efficient real-time realization of a Gaussian mixture model (GMM) for execution on the NXP FRDM-K64F embedded sensor board. We demonstrate the design of a customized program and data structure that generates real-time sensor features, and we show details and training/classification results for select IoT applications. The integrated hardware/software system enables real-time data analytics and continuous training and re-training of the machine learning (ML) algorithm. The real-time ML platform can accommodate several applications with lower sensor data traffic.
在物联网应用的嵌入式传感器系统中集成机器学习
在物联网应用中解释传感器数据是一个具有挑战性的问题,特别是在嵌入式系统中。我们考虑传感器数据分析,其中机器学习算法可以在嵌入式处理器/传感器板上完全实现。我们开发了一种有效的实时实现高斯混合模型(GMM),用于在NXP FRDM-K64F嵌入式传感器板上执行。我们演示了生成实时传感器特征的定制程序和数据结构的设计,并展示了选择物联网应用的细节和训练/分类结果。集成的硬件/软件系统支持实时数据分析和机器学习(ML)算法的持续训练和再训练。实时机器学习平台可以适应传感器数据流量较低的几种应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信