Fractal modelling and analysis of flow-field images

P. D. Tafti, R. Delgado-Gonzalo, A. Stalder, M. Unser
{"title":"Fractal modelling and analysis of flow-field images","authors":"P. D. Tafti, R. Delgado-Gonzalo, A. Stalder, M. Unser","doi":"10.1109/ISBI.2010.5490416","DOIUrl":null,"url":null,"abstract":"We introduce stochastic models for flow fields with parameters that dictate the scale-dependent (self-similar) character of the field and control the balance between its rotational vs compressive behaviour. The development of our models is motivated by the availability of imaging modalities that measure flow vector fields (flow-sensitive MRI and Doppler ultrasound). To study such data, we formulate estimators of the model parameters, and use them to quantify the Hurst exponent and directional properties of synthetic and real-world flow fields (measured by means of phase-contrast MRI) in 3D.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We introduce stochastic models for flow fields with parameters that dictate the scale-dependent (self-similar) character of the field and control the balance between its rotational vs compressive behaviour. The development of our models is motivated by the availability of imaging modalities that measure flow vector fields (flow-sensitive MRI and Doppler ultrasound). To study such data, we formulate estimators of the model parameters, and use them to quantify the Hurst exponent and directional properties of synthetic and real-world flow fields (measured by means of phase-contrast MRI) in 3D.
流场图像的分形建模与分析
我们引入了流场的随机模型,其参数决定了场的尺度依赖(自相似)特征,并控制了其旋转与压缩行为之间的平衡。我们的模型的发展是由测量流矢量场的成像模式(流敏感MRI和多普勒超声)的可用性所推动的。为了研究这些数据,我们制定了模型参数的估计器,并使用它们来量化合成流场和现实世界流场的Hurst指数和定向特性(通过相对比MRI测量)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信