Xiaodong Huang, Lei Peng, Cheng Lu, J. Bi, Haitao Yuan
{"title":"A Deep Learning Approach to Large-Scale Light Curve Prediction and Real-Time Anomaly Detection with Grubbs Criterion","authors":"Xiaodong Huang, Lei Peng, Cheng Lu, J. Bi, Haitao Yuan","doi":"10.1109/ICNSC48988.2020.9238105","DOIUrl":null,"url":null,"abstract":"In light curves (LCs), the brightness of stars is associated with time, and so is its image. The traditional data processing methods cannot effectively handle real-time and large-volume data of various LCs. To address this issue, this work develops a deep neural network named Dropout-based Recurrent Neural Networks (DRNN). It extracts complicated features of all images captured by Mini Ground-based Wide-Angle Camera array (Mini-GWAC) for point source extraction and cross-certification through Long Short-Term Memory units. DRNN can also produce warnings for abnormal values of light change curves. Furthermore, this work optimizes the training model by combining a dropout method with an adaptive moment estimation algorithm to iteratively update the network weight of the RNN based on the LCs data. Extensive experiments with a Mini-GWAC dataset demonstrate that DRNN outperforms several typical methods in terms of prediction performance of star brightness in large-scale astronomical LCs.","PeriodicalId":412290,"journal":{"name":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC48988.2020.9238105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In light curves (LCs), the brightness of stars is associated with time, and so is its image. The traditional data processing methods cannot effectively handle real-time and large-volume data of various LCs. To address this issue, this work develops a deep neural network named Dropout-based Recurrent Neural Networks (DRNN). It extracts complicated features of all images captured by Mini Ground-based Wide-Angle Camera array (Mini-GWAC) for point source extraction and cross-certification through Long Short-Term Memory units. DRNN can also produce warnings for abnormal values of light change curves. Furthermore, this work optimizes the training model by combining a dropout method with an adaptive moment estimation algorithm to iteratively update the network weight of the RNN based on the LCs data. Extensive experiments with a Mini-GWAC dataset demonstrate that DRNN outperforms several typical methods in terms of prediction performance of star brightness in large-scale astronomical LCs.