Stochastic and Private Nonconvex Outlier-Robust PCA

Tyler Maunu, Chenyun Yu, Gilad Lerman
{"title":"Stochastic and Private Nonconvex Outlier-Robust PCA","authors":"Tyler Maunu, Chenyun Yu, Gilad Lerman","doi":"10.48550/arXiv.2203.09276","DOIUrl":null,"url":null,"abstract":"We develop theoretically guaranteed stochastic methods for outlier-robust PCA. Outlier-robust PCA seeks an underlying low-dimensional linear subspace from a dataset that is corrupted with outliers. We are able to show that our methods, which involve stochastic geodesic gradient descent over the Grassmannian manifold, converge and recover an underlying subspace in various regimes through the development of a novel convergence analysis. The main application of this method is an effective differentially private algorithm for outlier-robust PCA that uses a Gaussian noise mechanism within the stochastic gradient method. Our results emphasize the advantages of the nonconvex methods over another convex approach to solving this problem in the differentially private setting. Experiments on synthetic and stylized data verify these results.","PeriodicalId":189279,"journal":{"name":"Mathematical and Scientific Machine Learning","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical and Scientific Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2203.09276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We develop theoretically guaranteed stochastic methods for outlier-robust PCA. Outlier-robust PCA seeks an underlying low-dimensional linear subspace from a dataset that is corrupted with outliers. We are able to show that our methods, which involve stochastic geodesic gradient descent over the Grassmannian manifold, converge and recover an underlying subspace in various regimes through the development of a novel convergence analysis. The main application of this method is an effective differentially private algorithm for outlier-robust PCA that uses a Gaussian noise mechanism within the stochastic gradient method. Our results emphasize the advantages of the nonconvex methods over another convex approach to solving this problem in the differentially private setting. Experiments on synthetic and stylized data verify these results.
随机和私有非凸离群值-鲁棒PCA
我们发展了理论上保证的离群鲁棒PCA随机方法。异常鲁棒PCA从被异常值破坏的数据集中寻找潜在的低维线性子空间。我们能够证明,我们的方法,其中涉及随机测地线梯度下降在格拉斯曼流形,收敛和恢复一个潜在的子空间在各种制度,通过一种新的收敛分析的发展。该方法的主要应用是在随机梯度方法中使用高斯噪声机制的一种有效的离群鲁棒PCA差分私有算法。我们的结果强调了非凸方法比另一种凸方法在不同的私人设置中解决这个问题的优势。对合成数据和程式化数据的实验验证了这些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信