{"title":"Noise cancellation on low-frequency signals using Empirical Mode Decomposition","authors":"M. D. Elbi, Aydin Kizilkaya","doi":"10.1109/SIU.2012.6204684","DOIUrl":null,"url":null,"abstract":"In this study, the noise cancellation problem on noise corrupted low-frequency signals by using the Empirical Mode Decomposition (EMD) method is considered. For this aim, the Intrinsic Mode (IM) functions of the low-frequency signal corrupted by white Gaussian noise are obtained by applying EMD on this signal. Savitzky-Golay filter and Least Squares Support Vector Machine (LS-SVM) regression are separately applied to the signal reconstructed using the low-frequency ones of the IM functions, and the estimation performance of the original noiseless signal is examined. It is observed from the simulations that a satisfactory result is achieved via LS-SVM regression.","PeriodicalId":256154,"journal":{"name":"2012 20th Signal Processing and Communications Applications Conference (SIU)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 20th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2012.6204684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this study, the noise cancellation problem on noise corrupted low-frequency signals by using the Empirical Mode Decomposition (EMD) method is considered. For this aim, the Intrinsic Mode (IM) functions of the low-frequency signal corrupted by white Gaussian noise are obtained by applying EMD on this signal. Savitzky-Golay filter and Least Squares Support Vector Machine (LS-SVM) regression are separately applied to the signal reconstructed using the low-frequency ones of the IM functions, and the estimation performance of the original noiseless signal is examined. It is observed from the simulations that a satisfactory result is achieved via LS-SVM regression.