New similarity index based on the aggregation of membership functions through OWA operator

A. A. Younes, Frédéric Blanchard, M. Herbin
{"title":"New similarity index based on the aggregation of membership functions through OWA operator","authors":"A. A. Younes, Frédéric Blanchard, M. Herbin","doi":"10.15439/2015F174","DOIUrl":null,"url":null,"abstract":"In the field of data analysis, the use of metrics is a classical way to assess pairwise similarity. Unfortunately the popular distances are often inoperative because of the noise, the multidimensionality and the heterogeneous nature of data. These drawbacks lead us to propose a similarity index based on fuzzy set theory. Each object of the dataset is described with the vector of its fuzzy attributes. Thanks to aggregation operators, the object is fuzzified by using the fuzzy attributes. Thus each object becomes a fuzzy subset within the dataset. The similarity of a reference object compared to another one is assessed through the membership function of the fuzzified reference object and an aggregation method using OWA operator.","PeriodicalId":276884,"journal":{"name":"2015 Federated Conference on Computer Science and Information Systems (FedCSIS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Federated Conference on Computer Science and Information Systems (FedCSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15439/2015F174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the field of data analysis, the use of metrics is a classical way to assess pairwise similarity. Unfortunately the popular distances are often inoperative because of the noise, the multidimensionality and the heterogeneous nature of data. These drawbacks lead us to propose a similarity index based on fuzzy set theory. Each object of the dataset is described with the vector of its fuzzy attributes. Thanks to aggregation operators, the object is fuzzified by using the fuzzy attributes. Thus each object becomes a fuzzy subset within the dataset. The similarity of a reference object compared to another one is assessed through the membership function of the fuzzified reference object and an aggregation method using OWA operator.
通过OWA算子对隶属函数进行聚合,建立新的相似度索引
在数据分析领域,使用度量是评估两两相似性的经典方法。不幸的是,由于数据的噪声、多维性和异构性,常用的距离通常是无效的。这些缺点促使我们提出了一种基于模糊集理论的相似度指标。数据集的每个对象用其模糊属性向量进行描述。借助聚合运算符,使用模糊属性对对象进行模糊化。因此,每个对象都成为数据集中的模糊子集。通过模糊化后的引用对象的隶属度函数和OWA算子的聚合方法来评估引用对象与其他引用对象的相似性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信