Marco Gomes, Vitor Silva, F. Cercas, Martin Tomlinson
{"title":"Low bBack-off 16-APSK transmission using magnitude modulation and symbol quantization","authors":"Marco Gomes, Vitor Silva, F. Cercas, Martin Tomlinson","doi":"10.1109/IWSSC.2008.4656796","DOIUrl":null,"url":null,"abstract":"QAM and APSK are used to meet the ever growing demand for higher data rates in bandwidth limited satellite channels whose main constraint to communication capacity is a non-linear transmitting high power amplifier (HPA). The inherent APSK robustness against nonlinear distortion leads to its introduction in the recent standard for digital video broadcasting (DVB-S2). Power efficiency is still limited by high signal PAPR at the HPA input. Magnitude modulation is a technique for PAPR reduction, proposed with success for QPSK. This paper shows that it is possible to use the magnitude modulation concept for the 16-APSK case, even considering the huge number of symbol combinations. The methodpsilas capability to avoid phase modulation is improved. In order to reduce look-up table computation complexity and storage requirements, the constellation symbols are vector quantized. Constellation and RRC symmetries are also explored. Experimental results show considerable gains of 80% in back-off reduction.","PeriodicalId":137382,"journal":{"name":"2008 IEEE International Workshop on Satellite and Space Communications","volume":"74 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Workshop on Satellite and Space Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSSC.2008.4656796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
QAM and APSK are used to meet the ever growing demand for higher data rates in bandwidth limited satellite channels whose main constraint to communication capacity is a non-linear transmitting high power amplifier (HPA). The inherent APSK robustness against nonlinear distortion leads to its introduction in the recent standard for digital video broadcasting (DVB-S2). Power efficiency is still limited by high signal PAPR at the HPA input. Magnitude modulation is a technique for PAPR reduction, proposed with success for QPSK. This paper shows that it is possible to use the magnitude modulation concept for the 16-APSK case, even considering the huge number of symbol combinations. The methodpsilas capability to avoid phase modulation is improved. In order to reduce look-up table computation complexity and storage requirements, the constellation symbols are vector quantized. Constellation and RRC symmetries are also explored. Experimental results show considerable gains of 80% in back-off reduction.