{"title":"Disparity energy model using a trained neuronal population","authors":"Jaime A. Martins, J. Rodrigues, J. du Buf","doi":"10.1109/ISSPIT.2011.6151575","DOIUrl":null,"url":null,"abstract":"Depth information using the biological Disparity Energy Model can be obtained by using a population of complex cells. This model explicitly involves cell parameters like their spatial frequency, orientation, binocular phase and position difference. However, this is a mathematical model. Our brain does not have access to such parameters, it can only exploit responses. Therefore, we use a new model for encoding disparity information implicitly by employing a trained binocular neuronal population. This model allows to decode disparity information in a way similar to how our visual system could have developed this ability, during evolution, in order to accurately estimate disparity of entire scenes.","PeriodicalId":288042,"journal":{"name":"2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2011.6151575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Depth information using the biological Disparity Energy Model can be obtained by using a population of complex cells. This model explicitly involves cell parameters like their spatial frequency, orientation, binocular phase and position difference. However, this is a mathematical model. Our brain does not have access to such parameters, it can only exploit responses. Therefore, we use a new model for encoding disparity information implicitly by employing a trained binocular neuronal population. This model allows to decode disparity information in a way similar to how our visual system could have developed this ability, during evolution, in order to accurately estimate disparity of entire scenes.