Transparent load balancing of MPI programs using OmpSs-2@Cluster and DLB

J. Mena, O. Shaaban, Víctor López, Marta Garcia, P. Carpenter, E. Ayguadé, Jesús Labarta
{"title":"Transparent load balancing of MPI programs using OmpSs-2@Cluster and DLB","authors":"J. Mena, O. Shaaban, Víctor López, Marta Garcia, P. Carpenter, E. Ayguadé, Jesús Labarta","doi":"10.1145/3545008.3545045","DOIUrl":null,"url":null,"abstract":"Abstract Load imbalance is a long-standing source of inefficiency in high performance computing. The situation has only got worse as applications and systems increase in complexity, e.g., adaptive mesh refinement, DVFS, memory hierarchies, power and thermal management, and manufacturing processes. Load balancing is often implemented in the application, but it obscures application logic and may need extensive code refactoring. This paper presents an automated and transparent dynamic load balancing approach for MPI applications with OmpSs-2 tasks, which relieves applications from this burden. Only local and trivial changes are required to the application. Our approach exploits the ability of OmpSs-2@Cluster to offload tasks for execution on other nodes, and it reallocates compute resources among ranks using the Dynamic Load Balancing (DLB) library. It employs LeWI to react to fine-grained load imbalances and DROM to address coarse-grained load imbalances by reserving cores on other nodes that can be reclaimed on demand. We use an expander graph to limit the amount of point-to-point communication and state. The results show 46% reduction in time-to-solution for micro-scale solid mechanics on 32 nodes and a 20% reduction beyond DLB for n-body on 16 nodes, when one node is running slow. A synthetic benchmark shows that performance is within 10% of optimal for an imbalance of up to 2.0 on 8 nodes. All software is released open source.","PeriodicalId":360504,"journal":{"name":"Proceedings of the 51st International Conference on Parallel Processing","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 51st International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3545008.3545045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Load imbalance is a long-standing source of inefficiency in high performance computing. The situation has only got worse as applications and systems increase in complexity, e.g., adaptive mesh refinement, DVFS, memory hierarchies, power and thermal management, and manufacturing processes. Load balancing is often implemented in the application, but it obscures application logic and may need extensive code refactoring. This paper presents an automated and transparent dynamic load balancing approach for MPI applications with OmpSs-2 tasks, which relieves applications from this burden. Only local and trivial changes are required to the application. Our approach exploits the ability of OmpSs-2@Cluster to offload tasks for execution on other nodes, and it reallocates compute resources among ranks using the Dynamic Load Balancing (DLB) library. It employs LeWI to react to fine-grained load imbalances and DROM to address coarse-grained load imbalances by reserving cores on other nodes that can be reclaimed on demand. We use an expander graph to limit the amount of point-to-point communication and state. The results show 46% reduction in time-to-solution for micro-scale solid mechanics on 32 nodes and a 20% reduction beyond DLB for n-body on 16 nodes, when one node is running slow. A synthetic benchmark shows that performance is within 10% of optimal for an imbalance of up to 2.0 on 8 nodes. All software is released open source.
使用OmpSs-2@Cluster和DLB的MPI程序的透明负载平衡
负载不平衡是高性能计算中长期存在的低效率问题。随着应用程序和系统复杂性的增加,情况只会变得更糟,例如,自适应网格细化,DVFS,内存层次结构,电源和热管理以及制造工艺。负载平衡通常在应用程序中实现,但它模糊了应用程序逻辑,并且可能需要大量的代码重构。本文提出了一种具有OmpSs-2任务的MPI应用程序的自动透明动态负载平衡方法,减轻了应用程序的负载负担。只需要对应用程序进行局部和琐碎的更改。我们的方法利用OmpSs-2@Cluster卸载任务以便在其他节点上执行的能力,并使用动态负载平衡(Dynamic Load Balancing, DLB)库在队列之间重新分配计算资源。它使用LeWI来响应细粒度的负载不平衡,使用DROM来解决粗粒度的负载不平衡,方法是在其他节点上保留可按需回收的核心。我们使用扩展图来限制点对点通信和状态的数量。结果表明,当一个节点运行较慢时,微尺度固体力学在32个节点上的求解时间减少了46%,在16个节点上的n-体的求解时间减少了20%。综合基准测试显示,在8个节点上不平衡高达2.0的情况下,性能在最佳性能的10%以内。所有软件都是开源的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信