{"title":"Observer efficiency in discrimination tasks simulating malignant and benign breast lesions with ultrasound","authors":"C. Abbey, R. Zemp, Jie Liu, Michael F. Insana","doi":"10.1109/ACSSC.2004.1399116","DOIUrl":null,"url":null,"abstract":"We investigate an ideal observer approach to signal processing in ultrasonic imaging. In two-class discrimination tasks of the sort explored in this work, the ideal observer approach rests on the use of the likelihood ratio as a test statistic. We derive this test statistic in the domain of the radio frequency (RF) signal under multivariate Gaussian assumptions and we describe a power series approach for inverting the large covariance matrices that result. We also show how a Wiener-filter for deconvolution emerges from a first-order truncation of the power series. We then use the ideal observer approach to investigate performance in a number of tasks idealized from the use of ultrasonic imaging for the discrimination of malignant and benign breast tissue. We consider both standard B-mode processing, and the effect of Weiner filtering the RF data. We report the statistical efficiency of human observers in these tasks-as evaluated by psychophysical studies-with respect to the ideal observer. The ideal observer allows us to compute the statistical efficiency with which suboptimal observers-such as humans-perform these tasks and how they are influenced by signal processing parameters.","PeriodicalId":396779,"journal":{"name":"Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004.","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2004.1399116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
We investigate an ideal observer approach to signal processing in ultrasonic imaging. In two-class discrimination tasks of the sort explored in this work, the ideal observer approach rests on the use of the likelihood ratio as a test statistic. We derive this test statistic in the domain of the radio frequency (RF) signal under multivariate Gaussian assumptions and we describe a power series approach for inverting the large covariance matrices that result. We also show how a Wiener-filter for deconvolution emerges from a first-order truncation of the power series. We then use the ideal observer approach to investigate performance in a number of tasks idealized from the use of ultrasonic imaging for the discrimination of malignant and benign breast tissue. We consider both standard B-mode processing, and the effect of Weiner filtering the RF data. We report the statistical efficiency of human observers in these tasks-as evaluated by psychophysical studies-with respect to the ideal observer. The ideal observer allows us to compute the statistical efficiency with which suboptimal observers-such as humans-perform these tasks and how they are influenced by signal processing parameters.