A review on identification of atrial septal defect using deep learning

Hima Vijayan V P, Prof.(Dr.)Abdul Rahiman, Dr. Lizy Abraham, Dr. Deepambika V.A
{"title":"A review on identification of atrial septal defect using deep learning","authors":"Hima Vijayan V P, Prof.(Dr.)Abdul Rahiman, Dr. Lizy Abraham, Dr. Deepambika V.A","doi":"10.54228/mjaret02220002","DOIUrl":null,"url":null,"abstract":"The third most prevalent kind of congenital cardiac disease is atrial septal defects (ASD). Even with extensive shunts, the majority of individuals remain asymptomatic throughout their infancy. Echocardiogram, Chest X-ray, Electrocardiogram (ECG), Cardiac catheterization, MRI, and CT scan may all be used to detect the abnormality. Deep learning can be employed for automated estimation of the defect from the test result. The goal of this review paper is first to provide an insight into ASD, the methods for diagnosis, the application of deep learning models for distinguishing the defect, defect detection accuracy and algorithm parameters.","PeriodicalId":324503,"journal":{"name":"Multidisciplinary Journal for Applied Research in Engineering and Technology","volume":"335 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multidisciplinary Journal for Applied Research in Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54228/mjaret02220002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The third most prevalent kind of congenital cardiac disease is atrial septal defects (ASD). Even with extensive shunts, the majority of individuals remain asymptomatic throughout their infancy. Echocardiogram, Chest X-ray, Electrocardiogram (ECG), Cardiac catheterization, MRI, and CT scan may all be used to detect the abnormality. Deep learning can be employed for automated estimation of the defect from the test result. The goal of this review paper is first to provide an insight into ASD, the methods for diagnosis, the application of deep learning models for distinguishing the defect, defect detection accuracy and algorithm parameters.
应用深度学习识别房间隔缺损的研究进展
第三种最常见的先天性心脏病是房间隔缺损(ASD)。即使有广泛的分流,大多数人在婴儿期仍无症状。超声心动图、胸片、心电图、心导管、核磁共振和CT扫描都可用于检测异常。深度学习可以用于从测试结果中自动估计缺陷。本文的目的是首先介绍ASD、诊断方法、深度学习模型在缺陷识别中的应用、缺陷检测的准确性和算法参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信