Application of autoregressive decomposition and pole tracking to pathological voice signals

P. Scalassara, M. E. Dajer, Carlos Dias Maciel
{"title":"Application of autoregressive decomposition and pole tracking to pathological voice signals","authors":"P. Scalassara, M. E. Dajer, Carlos Dias Maciel","doi":"10.1109/ISM.2005.35","DOIUrl":null,"url":null,"abstract":"In this paper, it is presented an insight of the effects of the application of autoregressive (AR) decomposition and pole tracking to voice signals. The AR model is used to decompose the signals in a set of poles which has a correspondence to the peaks of the signals power spectral density function (PSD). The aim of this work is to show the differences in the behavior of these poles for voice signals collected from two groups of people, one with healthy glottal tract and another with nodule pathology in vocal folds.","PeriodicalId":322363,"journal":{"name":"Seventh IEEE International Symposium on Multimedia (ISM'05)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh IEEE International Symposium on Multimedia (ISM'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2005.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, it is presented an insight of the effects of the application of autoregressive (AR) decomposition and pole tracking to voice signals. The AR model is used to decompose the signals in a set of poles which has a correspondence to the peaks of the signals power spectral density function (PSD). The aim of this work is to show the differences in the behavior of these poles for voice signals collected from two groups of people, one with healthy glottal tract and another with nodule pathology in vocal folds.
自回归分解和极点跟踪在病理语音信号中的应用
本文介绍了自回归(AR)分解和极点跟踪在语音信号中的应用效果。利用AR模型将信号分解为与信号功率谱密度函数(PSD)峰值对应的一组极点。这项工作的目的是从两组人收集的声音信号中显示这些极点的行为差异,一组是健康的声门道,另一组是声带结节病理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信