ASTM: An Attentional Segmentation Based Topic Model for Short Texts

Jiamiao Wang, Ling Chen, Lu Qin, Xindong Wu
{"title":"ASTM: An Attentional Segmentation Based Topic Model for Short Texts","authors":"Jiamiao Wang, Ling Chen, Lu Qin, Xindong Wu","doi":"10.1109/ICDM.2018.00073","DOIUrl":null,"url":null,"abstract":"To address the data sparsity problem in short text understanding, various alternative topic models leveraging word embeddings as background knowledge have been developed recently. However, existing models combine auxiliary information and topic modeling in a straightforward way without considering human reading habits. In contrast, extensive studies have proven that it is full of potential in textual analysis by taking into account human attention. Therefore, we propose a novel model, Attentional Segmentation based Topic Model (ASTM), to integrate both word embeddings as supplementary information and an attention mechanism that segments short text documents into fragments of adjacent words receiving similar attention. Each segment is assigned to a topic and each document can have multiple topics. We evaluate the performance of our model on three real-world short text datasets. The experimental results demonstrate that our model outperforms the state-of-the-art in terms of both topic coherence and text classification.","PeriodicalId":286444,"journal":{"name":"2018 IEEE International Conference on Data Mining (ICDM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2018.00073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

To address the data sparsity problem in short text understanding, various alternative topic models leveraging word embeddings as background knowledge have been developed recently. However, existing models combine auxiliary information and topic modeling in a straightforward way without considering human reading habits. In contrast, extensive studies have proven that it is full of potential in textual analysis by taking into account human attention. Therefore, we propose a novel model, Attentional Segmentation based Topic Model (ASTM), to integrate both word embeddings as supplementary information and an attention mechanism that segments short text documents into fragments of adjacent words receiving similar attention. Each segment is assigned to a topic and each document can have multiple topics. We evaluate the performance of our model on three real-world short text datasets. The experimental results demonstrate that our model outperforms the state-of-the-art in terms of both topic coherence and text classification.
ASTM:基于注意力分割的短文本主题模型
为了解决短文本理解中的数据稀疏性问题,近年来出现了多种利用词嵌入作为背景知识的备选主题模型。然而,现有的模型将辅助信息和主题建模直接结合起来,没有考虑人类的阅读习惯。相反,大量的研究证明,在文本分析中考虑人的注意力是很有潜力的。因此,我们提出了一种新的模型,即基于注意力分割的主题模型(ASTM),该模型将作为补充信息的词嵌入和一种将短文本文档分割成受到相似关注的相邻词片段的注意机制结合在一起。每个片段分配给一个主题,每个文档可以有多个主题。我们在三个真实的短文本数据集上评估了我们的模型的性能。实验结果表明,我们的模型在主题连贯和文本分类方面都优于目前最先进的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信