Time-Parallel Computation of Pseudo-Adjoints for a Leapfrog Scheme

C. Bischof
{"title":"Time-Parallel Computation of Pseudo-Adjoints for a Leapfrog Scheme","authors":"C. Bischof","doi":"10.1142/S0129053304000219","DOIUrl":null,"url":null,"abstract":"The leapfrog scheme is a commonly used second-order difference scheme for solving differential equations. If Z(t) denotes the state of a system at a particular time step t, the leapfrog scheme computes the state at the next time step as Z(t+1)=H(Z(t),Z(t-1),W), where H is the nonlinear time-stepping operator and W represents parameters that are not time-dependent. In this note, we show how the associativity of the chain rule of differential calculus can be used to compute a so-called adjoint, the derivative of a scalar-valued function applied to the final state Z(T) with respect to some chosen parameters, efficiently in a parallel fashion. To this end, we (1) employ the reverse mode of automatic differentiation at the outermost level, (2) use a sparsity-exploiting version of the forward mode of automatic differentiation to compute derivatives of H at every time step, and (3) exploit chain rule associativity to compute derivatives at individual time steps in parallel. We report on experimental results with a 2-D shallow water equations model problem on an IBM SP parallel computer and a network of Sun SPARCstations.","PeriodicalId":270006,"journal":{"name":"Int. J. High Speed Comput.","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. High Speed Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129053304000219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The leapfrog scheme is a commonly used second-order difference scheme for solving differential equations. If Z(t) denotes the state of a system at a particular time step t, the leapfrog scheme computes the state at the next time step as Z(t+1)=H(Z(t),Z(t-1),W), where H is the nonlinear time-stepping operator and W represents parameters that are not time-dependent. In this note, we show how the associativity of the chain rule of differential calculus can be used to compute a so-called adjoint, the derivative of a scalar-valued function applied to the final state Z(T) with respect to some chosen parameters, efficiently in a parallel fashion. To this end, we (1) employ the reverse mode of automatic differentiation at the outermost level, (2) use a sparsity-exploiting version of the forward mode of automatic differentiation to compute derivatives of H at every time step, and (3) exploit chain rule associativity to compute derivatives at individual time steps in parallel. We report on experimental results with a 2-D shallow water equations model problem on an IBM SP parallel computer and a network of Sun SPARCstations.
跳越方案伪伴随的时间并行计算
跨越式格式是求解微分方程常用的二阶差分格式。如果Z(t)表示系统在特定时间步长t处的状态,则跳越方案计算下一个时间步长的状态为Z(t+1)=H(Z(t),Z(t-1),W),其中H为非线性时间步长算子,W表示与时间无关的参数。在本文中,我们将展示如何利用微积分链式法则的结合律来计算所谓的伴随函数,即标量值函数对某些选定参数的最终状态Z(T)的导数,有效地以并行方式计算。为此,我们(1)在最外层采用逆向自动微分模式,(2)使用稀疏性利用的正向自动微分模式计算H在每个时间步长的导数,(3)利用链式法则结合性并行计算各个时间步长的导数。本文报道了在IBM SP并行计算机和Sun sparcstation网络上的二维浅水方程模型问题的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信