{"title":"Time-Parallel Computation of Pseudo-Adjoints for a Leapfrog Scheme","authors":"C. Bischof","doi":"10.1142/S0129053304000219","DOIUrl":null,"url":null,"abstract":"The leapfrog scheme is a commonly used second-order difference scheme for solving differential equations. If Z(t) denotes the state of a system at a particular time step t, the leapfrog scheme computes the state at the next time step as Z(t+1)=H(Z(t),Z(t-1),W), where H is the nonlinear time-stepping operator and W represents parameters that are not time-dependent. In this note, we show how the associativity of the chain rule of differential calculus can be used to compute a so-called adjoint, the derivative of a scalar-valued function applied to the final state Z(T) with respect to some chosen parameters, efficiently in a parallel fashion. To this end, we (1) employ the reverse mode of automatic differentiation at the outermost level, (2) use a sparsity-exploiting version of the forward mode of automatic differentiation to compute derivatives of H at every time step, and (3) exploit chain rule associativity to compute derivatives at individual time steps in parallel. We report on experimental results with a 2-D shallow water equations model problem on an IBM SP parallel computer and a network of Sun SPARCstations.","PeriodicalId":270006,"journal":{"name":"Int. J. High Speed Comput.","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. High Speed Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129053304000219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
The leapfrog scheme is a commonly used second-order difference scheme for solving differential equations. If Z(t) denotes the state of a system at a particular time step t, the leapfrog scheme computes the state at the next time step as Z(t+1)=H(Z(t),Z(t-1),W), where H is the nonlinear time-stepping operator and W represents parameters that are not time-dependent. In this note, we show how the associativity of the chain rule of differential calculus can be used to compute a so-called adjoint, the derivative of a scalar-valued function applied to the final state Z(T) with respect to some chosen parameters, efficiently in a parallel fashion. To this end, we (1) employ the reverse mode of automatic differentiation at the outermost level, (2) use a sparsity-exploiting version of the forward mode of automatic differentiation to compute derivatives of H at every time step, and (3) exploit chain rule associativity to compute derivatives at individual time steps in parallel. We report on experimental results with a 2-D shallow water equations model problem on an IBM SP parallel computer and a network of Sun SPARCstations.