Improving language-supervised object detection with linguistic structure analysis

Arushi Rai, Adriana Kovashka
{"title":"Improving language-supervised object detection with linguistic structure analysis","authors":"Arushi Rai, Adriana Kovashka","doi":"10.1109/CVPRW59228.2023.00588","DOIUrl":null,"url":null,"abstract":"Language-supervised object detection typically uses descriptive captions from human-annotated datasets. However, in-the-wild captions take on wider styles of language. We analyze one particular ubiquitous form of language: narrative. We study the differences in linguistic structure and visual-text alignment in narrative and descriptive captions and find we can classify descriptive and narrative style captions using linguistic features such as part of speech, rhetoric structure theory, and multimodal discourse. Then, we use this to select captions from which to extract image-level labels as supervision for weakly supervised object detection. We also improve the quality of extracted labels by filtering based on proximity to verb types for both descriptive and narrative captions.","PeriodicalId":355438,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW59228.2023.00588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Language-supervised object detection typically uses descriptive captions from human-annotated datasets. However, in-the-wild captions take on wider styles of language. We analyze one particular ubiquitous form of language: narrative. We study the differences in linguistic structure and visual-text alignment in narrative and descriptive captions and find we can classify descriptive and narrative style captions using linguistic features such as part of speech, rhetoric structure theory, and multimodal discourse. Then, we use this to select captions from which to extract image-level labels as supervision for weakly supervised object detection. We also improve the quality of extracted labels by filtering based on proximity to verb types for both descriptive and narrative captions.
用语言结构分析改进语言监督目标检测
语言监督对象检测通常使用来自人工注释数据集的描述性标题。然而,in-the-wild字幕采用了更广泛的语言风格。我们分析了一种特殊的无处不在的语言形式:叙事。我们研究了叙述性和描述性字幕在语言结构和视觉文本对齐方面的差异,发现我们可以使用词性、修辞结构理论和多模态语篇等语言特征对叙述性和叙述性字幕进行分类。然后,我们使用它来选择标题,从中提取图像级标签作为弱监督对象检测的监督。我们还通过对描述性和叙述性标题的动词类型的接近度进行过滤,提高了提取标签的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信