Automated performance evaluation of range image segmentation

Jaesik Min, M. Powell, K. Bowyer
{"title":"Automated performance evaluation of range image segmentation","authors":"Jaesik Min, M. Powell, K. Bowyer","doi":"10.1109/WACV.2000.895418","DOIUrl":null,"url":null,"abstract":"We have developed an automated framework for objectively evaluating the performance of region segmentation algorithms. This framework is demonstrated with range image data sets, but is applicable to any type of imagery. Parameters of the segmentation algorithm are tuned using training images. Images and source code for the training process care publicly available. The trained parameters are then used to evaluate the algorithm on a (sequestered) test set. The primary performance metric is the average number of correctly segmented regions. Statistical tests are used to determine the significance of performance improvement over a baseline algorithm.","PeriodicalId":236308,"journal":{"name":"IEEE Workshop/Winter Conference on Applications of Computer Vision","volume":"309 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Workshop/Winter Conference on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2000.895418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

We have developed an automated framework for objectively evaluating the performance of region segmentation algorithms. This framework is demonstrated with range image data sets, but is applicable to any type of imagery. Parameters of the segmentation algorithm are tuned using training images. Images and source code for the training process care publicly available. The trained parameters are then used to evaluate the algorithm on a (sequestered) test set. The primary performance metric is the average number of correctly segmented regions. Statistical tests are used to determine the significance of performance improvement over a baseline algorithm.
距离图像分割的自动性能评价
我们开发了一个自动化的框架来客观地评估区域分割算法的性能。该框架以距离图像数据集为例,但适用于任何类型的图像。使用训练图像对分割算法的参数进行调整。图像和源代码的培训过程护理公开可用。然后使用训练好的参数在(隔离的)测试集上评估算法。主要性能指标是正确分割区域的平均数量。统计测试用于确定相对于基线算法的性能改进的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信