Work-in-Progress: EAST-DNN: Expediting Architectural SimulaTions Using Deep Neural Networks

Arko Dutt, G. Narasimman, Lin Jie, V. Chandrasekhar, M. Sabry
{"title":"Work-in-Progress: EAST-DNN: Expediting Architectural SimulaTions Using Deep Neural Networks","authors":"Arko Dutt, G. Narasimman, Lin Jie, V. Chandrasekhar, M. Sabry","doi":"10.1145/3349567.3351728","DOIUrl":null,"url":null,"abstract":"A rapid and accurate architectural simulator is a cornerstone for an efficient design-space exploration of computing systems. In this paper, we introduce EAST-DNN, a feed-forward deep neural network, to accelerate architectural simulations. EAST-DNN achieves $> 10^{6}\\times$ speedup with an average prediction error of 4.3% over the baseline simulator. It also achieves an average of $2\\times$ better accuracy with at least $2.3\\times$ speedup compared to state-of-the-art.","PeriodicalId":194982,"journal":{"name":"2019 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3349567.3351728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A rapid and accurate architectural simulator is a cornerstone for an efficient design-space exploration of computing systems. In this paper, we introduce EAST-DNN, a feed-forward deep neural network, to accelerate architectural simulations. EAST-DNN achieves $> 10^{6}\times$ speedup with an average prediction error of 4.3% over the baseline simulator. It also achieves an average of $2\times$ better accuracy with at least $2.3\times$ speedup compared to state-of-the-art.
正在进行的工作:EAST-DNN:使用深度神经网络加速架构模拟
快速、准确的建筑模拟器是高效探索计算系统设计空间的基石。在本文中,我们引入了一种前馈深度神经网络EAST-DNN来加速建筑仿真。与基线模拟器相比,EAST-DNN实现了$> 10^{6}\倍$加速,平均预测误差为4.3%。与最先进的技术相比,它的平均精度提高了2倍,加速速度至少提高了2.3倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信