Machine Learning Bill Prediction for IoT-based Utility Management System

Wan Nuraihan Hajidah Wan Abdul Hadi, R. Rashid, M. Sarijari, S. Z. A. Hamid, Norsulliatie Muhammad
{"title":"Machine Learning Bill Prediction for IoT-based Utility Management System","authors":"Wan Nuraihan Hajidah Wan Abdul Hadi, R. Rashid, M. Sarijari, S. Z. A. Hamid, Norsulliatie Muhammad","doi":"10.1109/ISTT56288.2022.9966533","DOIUrl":null,"url":null,"abstract":"Electricity consumption has become a forefront issue of global energy demand management, and one of the biggest contributors to Malaysia’s high electricity demand is the residential sector. Hence, user monitoring of energy consumption is critical for global energy efficiency. The aim of this project is to develop a smart energy metering and appliance control using a microcontroller ESP32 and Arduino IDE, provide prediction for bills to allow decision-making based on energy conservation measures using artificial neural network (ANN) model on MATLAB, provide a dashboard to monitor energy consumption, display accumulated bill and control of appliances on Adafruit IO platform, and provide notifications through email when bill exceeds limit using If This Then That (IFTTT) software platform. At about 94% accuracy of bill prediction, the developed system is believed to be able to contribute significantly to an efficient household utility management system.","PeriodicalId":389716,"journal":{"name":"2022 IEEE 6th International Symposium on Telecommunication Technologies (ISTT)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 6th International Symposium on Telecommunication Technologies (ISTT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISTT56288.2022.9966533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Electricity consumption has become a forefront issue of global energy demand management, and one of the biggest contributors to Malaysia’s high electricity demand is the residential sector. Hence, user monitoring of energy consumption is critical for global energy efficiency. The aim of this project is to develop a smart energy metering and appliance control using a microcontroller ESP32 and Arduino IDE, provide prediction for bills to allow decision-making based on energy conservation measures using artificial neural network (ANN) model on MATLAB, provide a dashboard to monitor energy consumption, display accumulated bill and control of appliances on Adafruit IO platform, and provide notifications through email when bill exceeds limit using If This Then That (IFTTT) software platform. At about 94% accuracy of bill prediction, the developed system is believed to be able to contribute significantly to an efficient household utility management system.
基于物联网的公用事业管理系统的机器学习账单预测
电力消耗已成为全球能源需求管理的前沿问题,而马来西亚高电力需求的最大贡献者之一是住宅部门。因此,用户对能源消耗的监测对全球能源效率至关重要。本项目的目的是利用微控制器ESP32和Arduino IDE开发智能能源计量和家电控制,在MATLAB上利用人工神经网络(ANN)模型提供账单预测,以便基于节能措施进行决策,在Adafruit IO平台上提供仪表板监控能源消耗,显示累计账单和控制电器。并使用IFTTT软件平台,在账单超过限额时通过电子邮件通知。该系统的账单预测准确率约为94%,被认为能够为高效的家庭公用事业管理系统做出重大贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信