MergeRUCB: A Method for Large-Scale Online Ranker Evaluation

M. Zoghi, Shimon Whiteson, M. de Rijke
{"title":"MergeRUCB: A Method for Large-Scale Online Ranker Evaluation","authors":"M. Zoghi, Shimon Whiteson, M. de Rijke","doi":"10.1145/2684822.2685290","DOIUrl":null,"url":null,"abstract":"A key challenge in information retrieval is that of on-line ranker evaluation: determining which one of a finite set of rankers performs the best in expectation on the basis of user clicks on presented document lists. When the presented lists are constructed using interleaved comparison methods, which interleave lists proposed by two different candidate rankers, then the problem of minimizing the total regret accumulated while evaluating the rankers can be formalized as a K-armed dueling bandit problem. In the setting of web search, the number of rankers under consideration may be large. Scaling effectively in the presence of so many rankers is a key challenge not adequately addressed by existing algorithms. We propose a new method, which we call mergeRUCB, that uses \"localized\" comparisons to provide the first provably scalable K-armed dueling bandit algorithm. Empirical comparisons on several large learning to rank datasets show that mergeRUCB can substantially outperform the state of the art K-armed dueling bandit algorithms when many rankers must be compared. Moreover, we provide theoretical guarantees demonstrating the soundness of our algorithm.","PeriodicalId":179443,"journal":{"name":"Proceedings of the Eighth ACM International Conference on Web Search and Data Mining","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eighth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2684822.2685290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

Abstract

A key challenge in information retrieval is that of on-line ranker evaluation: determining which one of a finite set of rankers performs the best in expectation on the basis of user clicks on presented document lists. When the presented lists are constructed using interleaved comparison methods, which interleave lists proposed by two different candidate rankers, then the problem of minimizing the total regret accumulated while evaluating the rankers can be formalized as a K-armed dueling bandit problem. In the setting of web search, the number of rankers under consideration may be large. Scaling effectively in the presence of so many rankers is a key challenge not adequately addressed by existing algorithms. We propose a new method, which we call mergeRUCB, that uses "localized" comparisons to provide the first provably scalable K-armed dueling bandit algorithm. Empirical comparisons on several large learning to rank datasets show that mergeRUCB can substantially outperform the state of the art K-armed dueling bandit algorithms when many rankers must be compared. Moreover, we provide theoretical guarantees demonstrating the soundness of our algorithm.
MergeRUCB:一种大规模在线排名评估方法
信息检索中的一个关键挑战是在线排名评估:根据用户对所呈现的文档列表的单击,确定有限的一组排名器中哪一个在预期中表现最好。当提出的列表采用交错比较方法构建时,该方法将两个不同的候选排名者提出的列表交错在一起,那么在评估排名者时最小化累积的总遗憾的问题可以形式化为一个k臂决斗强盗问题。在网页搜索的设置中,考虑的排名数量可能很大。在如此多的排名器存在的情况下有效缩放是现有算法没有充分解决的关键挑战。我们提出了一种新的方法,我们称之为mergeRUCB,它使用“局部”比较来提供第一个可证明可扩展的k -武装决斗强盗算法。对几个大型学习排序数据集的经验比较表明,当必须比较许多排序器时,mergeRUCB可以大大优于最先进的K-armed决斗强盗算法。此外,我们提供了理论保证,证明了我们的算法的合理性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信