Fault detection in wheeled mobile robot based Machine Learning

Fedia Ibrahim, B. Boussaid, M. N. Abdelkrim
{"title":"Fault detection in wheeled mobile robot based Machine Learning","authors":"Fedia Ibrahim, B. Boussaid, M. N. Abdelkrim","doi":"10.1109/SSD54932.2022.9955871","DOIUrl":null,"url":null,"abstract":"Robotics gained in importance the attention of researchers nowadays in many fields, in particular monitoring and control. Deployed in harsh environments, Artificial Intelligence has shown a powerful ability to detect and diagnose faults. In this paper, a classification of defects is evaluated using different machines. learning techniques such as Random Forest (RF), Support Vector Machine (SVM), Artificial Neural Network (ANN) and Recurrent Neural network (RNN). A comparative analysis is carried out among the techniques previously mentioned on the basis of detection accuracy (DA), true Positive rate (TPR), Matthews correlation coefficients (MCC) and false alarm rate (FAR).","PeriodicalId":253898,"journal":{"name":"2022 19th International Multi-Conference on Systems, Signals & Devices (SSD)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 19th International Multi-Conference on Systems, Signals & Devices (SSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSD54932.2022.9955871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Robotics gained in importance the attention of researchers nowadays in many fields, in particular monitoring and control. Deployed in harsh environments, Artificial Intelligence has shown a powerful ability to detect and diagnose faults. In this paper, a classification of defects is evaluated using different machines. learning techniques such as Random Forest (RF), Support Vector Machine (SVM), Artificial Neural Network (ANN) and Recurrent Neural network (RNN). A comparative analysis is carried out among the techniques previously mentioned on the basis of detection accuracy (DA), true Positive rate (TPR), Matthews correlation coefficients (MCC) and false alarm rate (FAR).
基于机器学习的轮式移动机器人故障检测
如今,机器人技术在许多领域,特别是监测和控制领域受到了研究人员的重视。在恶劣的环境中,人工智能已经显示出强大的故障检测和诊断能力。本文用不同的机器对缺陷进行分类。学习技术,如随机森林(RF),支持向量机(SVM),人工神经网络(ANN)和递归神经网络(RNN)。根据检测准确率(DA)、真阳性率(TPR)、马修斯相关系数(MCC)和虚警率(FAR)对上述技术进行对比分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信