{"title":"Fault detection in wheeled mobile robot based Machine Learning","authors":"Fedia Ibrahim, B. Boussaid, M. N. Abdelkrim","doi":"10.1109/SSD54932.2022.9955871","DOIUrl":null,"url":null,"abstract":"Robotics gained in importance the attention of researchers nowadays in many fields, in particular monitoring and control. Deployed in harsh environments, Artificial Intelligence has shown a powerful ability to detect and diagnose faults. In this paper, a classification of defects is evaluated using different machines. learning techniques such as Random Forest (RF), Support Vector Machine (SVM), Artificial Neural Network (ANN) and Recurrent Neural network (RNN). A comparative analysis is carried out among the techniques previously mentioned on the basis of detection accuracy (DA), true Positive rate (TPR), Matthews correlation coefficients (MCC) and false alarm rate (FAR).","PeriodicalId":253898,"journal":{"name":"2022 19th International Multi-Conference on Systems, Signals & Devices (SSD)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 19th International Multi-Conference on Systems, Signals & Devices (SSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSD54932.2022.9955871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Robotics gained in importance the attention of researchers nowadays in many fields, in particular monitoring and control. Deployed in harsh environments, Artificial Intelligence has shown a powerful ability to detect and diagnose faults. In this paper, a classification of defects is evaluated using different machines. learning techniques such as Random Forest (RF), Support Vector Machine (SVM), Artificial Neural Network (ANN) and Recurrent Neural network (RNN). A comparative analysis is carried out among the techniques previously mentioned on the basis of detection accuracy (DA), true Positive rate (TPR), Matthews correlation coefficients (MCC) and false alarm rate (FAR).