Symbol Descriptor Based on Shape Context and Vector Model of Information Retrieval

T.-O. Nguyen, S. Tabbone, O. R. Terrades
{"title":"Symbol Descriptor Based on Shape Context and Vector Model of Information Retrieval","authors":"T.-O. Nguyen, S. Tabbone, O. R. Terrades","doi":"10.1109/DAS.2008.58","DOIUrl":null,"url":null,"abstract":"In this paper we present an adaptive method for graphic symbol representation based on shape contexts. The proposed descriptor is invariant under classical geometric transforms (rotation, scale) and based on interest points. To reduce the complexity of matching a symbol to a largeset of candidates we use the popular vector model for information retrieval. In this way, on the set of shape descriptors we build a visual vocabulary where each symbol is retrieved on visual words. Experimental results on complex and occluded symbols show that the approach is very promising.","PeriodicalId":423207,"journal":{"name":"2008 The Eighth IAPR International Workshop on Document Analysis Systems","volume":"152 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 The Eighth IAPR International Workshop on Document Analysis Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAS.2008.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

In this paper we present an adaptive method for graphic symbol representation based on shape contexts. The proposed descriptor is invariant under classical geometric transforms (rotation, scale) and based on interest points. To reduce the complexity of matching a symbol to a largeset of candidates we use the popular vector model for information retrieval. In this way, on the set of shape descriptors we build a visual vocabulary where each symbol is retrieved on visual words. Experimental results on complex and occluded symbols show that the approach is very promising.
基于形状上下文和信息检索向量模型的符号描述符
本文提出了一种基于形状上下文的图形符号自适应表示方法。所提出的描述符在经典几何变换(旋转、尺度)和基于兴趣点下是不变的。为了降低将符号匹配到最大候选集的复杂性,我们使用流行的向量模型进行信息检索。通过这种方式,我们在形状描述符的集合上建立了一个视觉词汇表,其中每个符号都是在视觉词上检索的。对复杂和遮挡符号的实验结果表明,该方法是很有前途的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信